Get help now

4347210-27749500Kurdistan Regional Government-Iraq Ministry of Higher Education and Scientific Research University of Salahaddin College of Science – Department of Chemistry Determination of Cyanide

Updated January 17, 2019
dovnload

Download Paper

File format: .pdf, .doc, available for editing

4347210-27749500Kurdistan Regional Government-Iraq Ministry of Higher Education and Scientific Research University of Salahaddin College of Science – Department of Chemistry Determination of Cyanide essay

Get help to write your own 100% unique essay

Get custom paper

78 writers are online and ready to chat

This essay has been submitted to us by a student. This is not an example of the work written by our writers.

4347210-27749500Kurdistan Regional Government-Iraq Ministry of Higher Education and Scientific Research University of Salahaddin College of Science – Department of Chemistry Determination of Cyanide, Thiocyanate and Pyridine Derivative Compounds Basing on the K?nig Reaction Submitted to the Department of Chemistry College of Science – Salahaddin University – Erbil A Review article In Organic Chemistry By Trifa Khalaf Mohammed Supervised By Asst. Prof. Dr. Rebwar Omer Hassan June -2018 Determination of Cyanide, Thiocyanate and Pyridine Derivative Compounds Basing on the K?nig Reaction Abstract Cyanide compounds have many applications in various industries, these industries discharge large amounts of cyanide contained in their wastewater to the environment which can be dangerous for human life. Thiocyanate is also formed biologically from the detoxification of cyanide, it is less toxic than cyanide but more stable and thus more difficult to destroy, therefore, the cyanide, thiocyanate and pyridine detection is important for monitoring and controlling its toxicity. This article describes the some analytical method are typically based on k?nig reaction for cyanide, thiocyanate and nicotinic acid measurement in different matrices ranging from drinking water and wastewater, to cigarette smoke and exhaled breath to biological fluids like blood, urine and saliva.

Keyword: Cyanide, Thiocyanate, Pyridine, K?nig reaction, Analytical method. 1.IntroductionK?nig reaction was one of the first wide-spread methods to analyze cyanide, thiocyanid and nicotinic acid. The initial use of the K?nig reaction for cyanide detection evolving by Aldridge in the mid 1940’s ADDIN EN.CITE ;EndNote;;Cite;;Author;Aldridge;/Author;;Year;1944;/Year;;RecNum;55;/RecNum;;DisplayText;(Aldridge, 1944, Aldridge, 1945);/DisplayText;;record;;rec-number;55;/rec-number;;foreign-keys;;key app=”EN” db-id=”pdv5aa2ah2x5tne5zecpawzgz2xprszwwv2d” timestamp=”1524374700″;55;/key;;/foreign-keys;;ref-type name=”Journal Article”;17;/ref-type;;contributors;;authors;;author;Aldridge, W_ N;/author;;/authors;;/contributors;;titles;;title;A new method for the estimation of micro quantities of cyanide and thiocyanate;/title;;secondary-title;Analyst;/secondary-title;;/titles;;periodical;;full-title;Analyst;/full-title;;/periodical;;pages;262-265;/pages;;volume;69;/volume;;number;822;/number;;dates;;year;1944;/year;;/dates;;isbn;1364-5528;/isbn;;urls;;/urls;;/record;;/Cite;;Cite;;Author;Aldridge;/Author;;Year;1945;/Year;;RecNum;69;/RecNum;;record;;rec-number;69;/rec-number;;foreign-keys;;key app=”EN” db-id=”pdv5aa2ah2x5tne5zecpawzgz2xprszwwv2d” timestamp=”1524914079″;69;/key;;/foreign-keys;;ref-type name=”Journal Article”;17;/ref-type;;contributors;;authors;;author;Aldridge, WN;/author;;/authors;;/contributors;;titles;;title;The estimation of micro quantities of cyanide and thiocyanate;/title;;secondary-title;The Analyst;/secondary-title;;/titles;;periodical;;full-title;The Analyst;/full-title;;/periodical;;pages;474-474;/pages;;volume;70;/volume;;dates;;year;1945;/year;;/dates;;isbn;0003-2654;/isbn;;urls;;/urls;;/record;;/Cite;;/EndNote;(Aldridge, 1944, Aldridge, 1945), and by Epstein in 1947. Various modified K?nig reactions have been reported, but the core technology is similar (Figure1) ADDIN EN.CITE ;EndNote;;Cite;;Author;Mak;/Author;;Year;2005;/Year;;RecNum;18;/RecNum;;DisplayText;(Mak et al., 2005);/DisplayText;;record;;rec-number;18;/rec-number;;foreign-keys;;key app=”EN” db-id=”pdv5aa2ah2x5tne5zecpawzgz2xprszwwv2d” timestamp=”1523431621″;18;/key;;/foreign-keys;;ref-type name=”Journal Article”;17;/ref-type;;contributors;;authors;;author;Mak, Karen K. W.;/author;;author;Yanase, Hideshi;/author;;author;Renneberg, Reinhard;/author;;/authors;;/contributors;;titles;;title;Cyanide fishing and cyanide detection in coral reef fish using chemical tests and biosensors;/title;;secondary-title;Biosensors and Bioelectronics;/secondary-title;;/titles;;periodical;;full-title;Biosensors and Bioelectronics;/full-title;;/periodical;;pages;2581-2593;/pages;;volume;20;/volume;;number;12;/number;;keywords;;keyword;Biosensor;/keyword;;keyword;Coral reef fish;/keyword;;keyword;Cyanide degrading enzyme;/keyword;;keyword;Cyanide fishing;/keyword;;keyword;Optical test;/keyword;;/keywords;;dates;;year;2005;/year;;pub-dates;;date;2005/06/15/;/date;;/pub-dates;;/dates;;isbn;0956-5663;/isbn;;urls;;related-urls;;url;http://www.sciencedirect.com/science/article/pii/S0956566304004270;/url;;/related-urls;;/urls;;electronic-resource-num;https://doi.org/10.1016/j.bios.2004.09.015;/electronic-resource-num;;/record;;/Cite;;/EndNote;(Mak et al., 2005), First the cyanide is converted to cyanogen chloride (CN-Cl( typically by tosylchloramide (chloramine-T) or hypochlorite, second the CN-Cl is then reacted with pyridine and another molecule, exemplarily barbituric acid or pyrzolone to produce coloured product (spectrophotometrically active product) PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5FcHN0ZWluPC9BdXRob3I+PFllYXI+MTk0NzwvWWVhcj48 UmVjTnVtPjcyPC9SZWNOdW0+PERpc3BsYXlUZXh0PihFcHN0ZWluLCAxOTQ3LCBCYWFyLCAxOTY2 LCBOYWdhc2hpbWEsIDE5ODQsIE5hZ2FzaGltYSBhbmQgT3phd2EsIDE5ODEsIEx1bmRxdWlzdCBl dCBhbC4sIDE5ODcsIEx1bmRxdWlzdCBhbmQgU8O2cmJvLCAxOTg5LCBEaXJpa29sdSBldCBhbC4s IDIwMDMpPC9EaXNwbGF5VGV4dD48cmVjb3JkPjxyZWMtbnVtYmVyPjcyPC9yZWMtbnVtYmVyPjxm b3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0icGR2NWFhMmFoMng1dG5lNXplY3Bhd3pn ejJ4cHJzend3djJkIiB0aW1lc3RhbXA9IjE1MjQ5MTYzODQiPjcyPC9rZXk+PC9mb3JlaWduLWtl eXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBlPjxjb250cmli dXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5FcHN0ZWluLCBKb3NlcGg8L2F1dGhvcj48L2F1dGhvcnM+ PC9jb250cmlidXRvcnM+PHRpdGxlcz48dGl0bGU+RXN0aW1hdGlvbiBvZiBtaWNyb3F1YW50aXRp ZXMgb2YgY3lhbmlkZTwvdGl0bGU+PHNlY29uZGFyeS10aXRsZT5BbmFseXRpY2FsIENoZW1pc3Ry eTwvc2Vjb25kYXJ5LXRpdGxlPjwvdGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPkFuYWx5 dGljYWwgQ2hlbWlzdHJ5PC9mdWxsLXRpdGxlPjwvcGVyaW9kaWNhbD48cGFnZXM+MjcyLTI3NDwv cGFnZXM+PHZvbHVtZT4xOTwvdm9sdW1lPjxudW1iZXI+NDwvbnVtYmVyPjxkYXRlcz48eWVhcj4x OTQ3PC95ZWFyPjwvZGF0ZXM+PGlzYm4+MDAwMy0yNzAwPC9pc2JuPjx1cmxzPjwvdXJscz48L3Jl Y29yZD48L0NpdGU+PENpdGU+PEF1dGhvcj5CYWFyPC9BdXRob3I+PFllYXI+MTk2NjwvWWVhcj48 UmVjTnVtPjczPC9SZWNOdW0+PHJlY29yZD48cmVjLW51bWJlcj43MzwvcmVjLW51bWJlcj48Zm9y ZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9InBkdjVhYTJhaDJ4NXRuZTV6ZWNwYXd6Z3oy eHByc3p3d3YyZCIgdGltZXN0YW1wPSIxNTI0OTE2OTI5Ij43Mzwva2V5PjwvZm9yZWlnbi1rZXlz PjxyZWYtdHlwZSBuYW1lPSJKb3VybmFsIEFydGljbGUiPjE3PC9yZWYtdHlwZT48Y29udHJpYnV0 b3JzPjxhdXRob3JzPjxhdXRob3I+QmFhciwgUzwvYXV0aG9yPjwvYXV0aG9ycz48L2NvbnRyaWJ1 dG9ycz48dGl0bGVzPjx0aXRsZT5UaGUgbWljcm8gZGV0ZXJtaW5hdGlvbiBvZiBjeWFuaWRlOiBJ dHMgYXBwbGljYXRpb24gdG8gdGhlIGFuYWx5c2lzIG9mIHdob2xlIGJsb29kPC90aXRsZT48c2Vj b25kYXJ5LXRpdGxlPkFuYWx5c3Q8L3NlY29uZGFyeS10aXRsZT48L3RpdGxlcz48cGVyaW9kaWNh bD48ZnVsbC10aXRsZT5BbmFseXN0PC9mdWxsLXRpdGxlPjwvcGVyaW9kaWNhbD48cGFnZXM+MjY4 LTI3MjwvcGFnZXM+PHZvbHVtZT45MTwvdm9sdW1lPjxudW1iZXI+MTA4MTwvbnVtYmVyPjxkYXRl cz48eWVhcj4xOTY2PC95ZWFyPjwvZGF0ZXM+PHVybHM+PC91cmxzPjwvcmVjb3JkPjwvQ2l0ZT48 Q2l0ZT48QXV0aG9yPk5hZ2FzaGltYTwvQXV0aG9yPjxZZWFyPjE5ODQ8L1llYXI+PFJlY051bT4x OTwvUmVjTnVtPjxyZWNvcmQ+PHJlYy1udW1iZXI+MTk8L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5 cz48a2V5IGFwcD0iRU4iIGRiLWlkPSJwZHY1YWEyYWgyeDV0bmU1emVjcGF3emd6MnhwcnN6d3d2 MmQiIHRpbWVzdGFtcD0iMTUyMzQzMzgyNyI+MTk8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5 cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0 aG9ycz48YXV0aG9yPk5hZ2FzaGltYSwgU2hpZ2VydTwvYXV0aG9yPjwvYXV0aG9ycz48L2NvbnRy aWJ1dG9ycz48dGl0bGVzPjx0aXRsZT5TaW11bHRhbmVvdXMgcmVhY3Rpb24gcmF0ZSBzcGVjdHJv cGhvdG9tZXRyaWMgZGV0ZXJtaW5hdGlvbiBvZiBjeWFuaWRlIGFuZCB0aGlvY3lhbmF0ZSBieSB1 c2Ugb2YgdGhlIHB5cmlkaW5lLWJhcmJpdHVyaWMgYWNpZCBtZXRob2Q8L3RpdGxlPjxzZWNvbmRh cnktdGl0bGU+QW5hbHl0aWNhbCBDaGVtaXN0cnk8L3NlY29uZGFyeS10aXRsZT48L3RpdGxlcz48 cGVyaW9kaWNhbD48ZnVsbC10aXRsZT5BbmFseXRpY2FsIENoZW1pc3RyeTwvZnVsbC10aXRsZT48 L3BlcmlvZGljYWw+PHBhZ2VzPjE5NDQtMTk0NzwvcGFnZXM+PHZvbHVtZT41Njwvdm9sdW1lPjxu dW1iZXI+MTE8L251bWJlcj48ZGF0ZXM+PHllYXI+MTk4NDwveWVhcj48L2RhdGVzPjxpc2JuPjAw MDMtMjcwMDwvaXNibj48dXJscz48L3VybHM+PC9yZWNvcmQ+PC9DaXRlPjxDaXRlPjxBdXRob3I+ TmFnYXNoaW1hPC9BdXRob3I+PFllYXI+MTk4MTwvWWVhcj48UmVjTnVtPjUzPC9SZWNOdW0+PHJl Y29yZD48cmVjLW51bWJlcj41MzwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJF TiIgZGItaWQ9InBkdjVhYTJhaDJ4NXRuZTV6ZWNwYXd6Z3oyeHByc3p3d3YyZCIgdGltZXN0YW1w PSIxNTIzOTA2Njg2Ij41Mzwva2V5PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3Vy bmFsIEFydGljbGUiPjE3PC9yZWYtdHlwZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+ TmFnYXNoaW1hLCBTaGlnZXJ1PC9hdXRob3I+PGF1dGhvcj5PemF3YSwgVGFrZWppcm88L2F1dGhv cj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRpdGxlcz48dGl0bGU+U3BlY3Ryb3Bob3RvbWV0 cmljIGRldGVybWluYXRpb24gb2YgY3lhbmlkZSB3aXRoIGlzb25pY290aW5pYyBhY2lkIGFuZCBi YXJiaXR1cmljIGFjaWQ8L3RpdGxlPjxzZWNvbmRhcnktdGl0bGU+SW50ZXJuYXRpb25hbCBKb3Vy bmFsIG9mIEVudmlyb25tZW50YWwgQW5hbHl0aWNhbCBDaGVtaXN0cnk8L3NlY29uZGFyeS10aXRs ZT48L3RpdGxlcz48cGVyaW9kaWNhbD48ZnVsbC10aXRsZT5JbnRlcm5hdGlvbmFsIEpvdXJuYWwg b2YgRW52aXJvbm1lbnRhbCBBbmFseXRpY2FsIENoZW1pc3RyeTwvZnVsbC10aXRsZT48L3Blcmlv ZGljYWw+PHBhZ2VzPjk5LTEwNjwvcGFnZXM+PHZvbHVtZT4xMDwvdm9sdW1lPjxudW1iZXI+Mjwv bnVtYmVyPjxkYXRlcz48eWVhcj4xOTgxPC95ZWFyPjwvZGF0ZXM+PGlzYm4+MDMwNi03MzE5PC9p c2JuPjx1cmxzPjwvdXJscz48L3JlY29yZD48L0NpdGU+PENpdGU+PEF1dGhvcj5MdW5kcXVpc3Q8 L0F1dGhvcj48WWVhcj4xOTg3PC9ZZWFyPjxSZWNOdW0+NzA8L1JlY051bT48cmVjb3JkPjxyZWMt bnVtYmVyPjcwPC9yZWMtbnVtYmVyPjxmb3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0i cGR2NWFhMmFoMng1dG5lNXplY3Bhd3pnejJ4cHJzend3djJkIiB0aW1lc3RhbXA9IjE1MjQ5MTUy MTEiPjcwPC9rZXk+PC9mb3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNs ZSI+MTc8L3JlZi10eXBlPjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5MdW5kcXVpc3Qs IFA8L2F1dGhvcj48YXV0aG9yPlJvc2xpbmcsIEhhbnM8L2F1dGhvcj48YXV0aG9yPlPDtnJibywg QjwvYXV0aG9yPjxhdXRob3I+VGliYmxpbmcsIExpdGE8L2F1dGhvcj48L2F1dGhvcnM+PC9jb250 cmlidXRvcnM+PHRpdGxlcz48dGl0bGU+Q3lhbmlkZSBjb25jZW50cmF0aW9ucyBpbiBibG9vZCBh ZnRlciBjaWdhcmV0dGUgc21va2luZywgYXMgZGV0ZXJtaW5lZCBieSBhIHNlbnNpdGl2ZSBmbHVv cmltZXRyaWMgbWV0aG9kPC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPkNsaW5pY2FsIGNoZW1pc3Ry eTwvc2Vjb25kYXJ5LXRpdGxlPjwvdGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPkNsaW5p Y2FsIGNoZW1pc3RyeTwvZnVsbC10aXRsZT48L3BlcmlvZGljYWw+PHBhZ2VzPjEyMjgtMTIzMDwv cGFnZXM+PHZvbHVtZT4zMzwvdm9sdW1lPjxudW1iZXI+NzwvbnVtYmVyPjxkYXRlcz48eWVhcj4x OTg3PC95ZWFyPjwvZGF0ZXM+PGlzYm4+MDAwOS05MTQ3PC9pc2JuPjx1cmxzPjwvdXJscz48L3Jl Y29yZD48L0NpdGU+PENpdGU+PEF1dGhvcj5MdW5kcXVpc3Q8L0F1dGhvcj48WWVhcj4xOTg5PC9Z ZWFyPjxSZWNOdW0+NzE8L1JlY051bT48cmVjb3JkPjxyZWMtbnVtYmVyPjcxPC9yZWMtbnVtYmVy Pjxmb3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0icGR2NWFhMmFoMng1dG5lNXplY3Bh d3pnejJ4cHJzend3djJkIiB0aW1lc3RhbXA9IjE1MjQ5MTU5MjEiPjcxPC9rZXk+PC9mb3JlaWdu LWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBlPjxjb250 cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5MdW5kcXVpc3QsIFBlcjwvYXV0aG9yPjxhdXRob3I+ U8O2cmJvLCBCbzwvYXV0aG9yPjwvYXV0aG9ycz48L2NvbnRyaWJ1dG9ycz48dGl0bGVzPjx0aXRs ZT5SYXBpZCBkZXRlcm1pbmF0aW9uIG9mIHRveGljIGN5YW5pZGUgY29uY2VudHJhdGlvbnMgaW4g Ymxvb2Q8L3RpdGxlPjxzZWNvbmRhcnktdGl0bGU+Q2xpbmljYWwgY2hlbWlzdHJ5PC9zZWNvbmRh cnktdGl0bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+Q2xpbmljYWwgY2hlbWlz dHJ5PC9mdWxsLXRpdGxlPjwvcGVyaW9kaWNhbD48cGFnZXM+NjE3LTYxOTwvcGFnZXM+PHZvbHVt ZT4zNTwvdm9sdW1lPjxudW1iZXI+NDwvbnVtYmVyPjxkYXRlcz48eWVhcj4xOTg5PC95ZWFyPjwv ZGF0ZXM+PGlzYm4+MDAwOS05MTQ3PC9pc2JuPjx1cmxzPjwvdXJscz48L3JlY29yZD48L0NpdGU+ PENpdGU+PEF1dGhvcj5EaXJpa29sdTwvQXV0aG9yPjxZZWFyPjIwMDM8L1llYXI+PFJlY051bT43 NTwvUmVjTnVtPjxyZWNvcmQ+PHJlYy1udW1iZXI+NzU8L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5 cz48a2V5IGFwcD0iRU4iIGRiLWlkPSJwZHY1YWEyYWgyeDV0bmU1emVjcGF3emd6MnhwcnN6d3d2 MmQiIHRpbWVzdGFtcD0iMTUyNDkxNzc5MSI+NzU8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5 cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0 aG9ycz48YXV0aG9yPkRpcmlrb2x1LCBMZXZlbnQ8L2F1dGhvcj48YXV0aG9yPkh1Z2hlcywgQ2hh cmxpZTwvYXV0aG9yPjxhdXRob3I+SGFya2lucywgRGFuPC9hdXRob3I+PGF1dGhvcj5Cb3lsZXMs IEplZmY8L2F1dGhvcj48YXV0aG9yPkJvc2tlbiwgSmVmZjwvYXV0aG9yPjxhdXRob3I+TGVobmVy LCBGcml0ejwvYXV0aG9yPjxhdXRob3I+VHJvcHBtYW5uLCBBbXk8L2F1dGhvcj48YXV0aG9yPk1j RG93ZWxsLCBLYXJlbjwvYXV0aG9yPjxhdXRob3I+VG9iaW4sIFRob21hczwvYXV0aG9yPjxhdXRo b3I+U2ViYXN0aWFuLCBNYW51IE08L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRp dGxlcz48dGl0bGU+VGhlIHRveGljb2tpbmV0aWNzIG9mIGN5YW5pZGUgYW5kIG1hbmRlbG9uaXRy aWxlIGluIHRoZSBob3JzZSBhbmQgdGhlaXIgcmVsZXZhbmNlIHRvIHRoZSBtYXJlIHJlcHJvZHVj dGl2ZSBsb3NzIHN5bmRyb21lPC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPlRveGljb2xvZ3kgbWVj aGFuaXNtcyBhbmQgbWV0aG9kczwvc2Vjb25kYXJ5LXRpdGxlPjwvdGl0bGVzPjxwZXJpb2RpY2Fs PjxmdWxsLXRpdGxlPlRveGljb2xvZ3kgbWVjaGFuaXNtcyBhbmQgbWV0aG9kczwvZnVsbC10aXRs ZT48L3BlcmlvZGljYWw+PHBhZ2VzPjE5OS0yMTE8L3BhZ2VzPjx2b2x1bWU+MTM8L3ZvbHVtZT48 bnVtYmVyPjM8L251bWJlcj48ZGF0ZXM+PHllYXI+MjAwMzwveWVhcj48L2RhdGVzPjxpc2JuPjE1 MzctNjUxNjwvaXNibj48dXJscz48L3VybHM+PC9yZWNvcmQ+PC9DaXRlPjwvRW5kTm90ZT5= ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5FcHN0ZWluPC9BdXRob3I+PFllYXI+MTk0NzwvWWVhcj48 UmVjTnVtPjcyPC9SZWNOdW0+PERpc3BsYXlUZXh0PihFcHN0ZWluLCAxOTQ3LCBCYWFyLCAxOTY2 LCBOYWdhc2hpbWEsIDE5ODQsIE5hZ2FzaGltYSBhbmQgT3phd2EsIDE5ODEsIEx1bmRxdWlzdCBl dCBhbC4sIDE5ODcsIEx1bmRxdWlzdCBhbmQgU8O2cmJvLCAxOTg5LCBEaXJpa29sdSBldCBhbC4s IDIwMDMpPC9EaXNwbGF5VGV4dD48cmVjb3JkPjxyZWMtbnVtYmVyPjcyPC9yZWMtbnVtYmVyPjxm b3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0icGR2NWFhMmFoMng1dG5lNXplY3Bhd3pn ejJ4cHJzend3djJkIiB0aW1lc3RhbXA9IjE1MjQ5MTYzODQiPjcyPC9rZXk+PC9mb3JlaWduLWtl eXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBlPjxjb250cmli dXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5FcHN0ZWluLCBKb3NlcGg8L2F1dGhvcj48L2F1dGhvcnM+ PC9jb250cmlidXRvcnM+PHRpdGxlcz48dGl0bGU+RXN0aW1hdGlvbiBvZiBtaWNyb3F1YW50aXRp ZXMgb2YgY3lhbmlkZTwvdGl0bGU+PHNlY29uZGFyeS10aXRsZT5BbmFseXRpY2FsIENoZW1pc3Ry eTwvc2Vjb25kYXJ5LXRpdGxlPjwvdGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPkFuYWx5 dGljYWwgQ2hlbWlzdHJ5PC9mdWxsLXRpdGxlPjwvcGVyaW9kaWNhbD48cGFnZXM+MjcyLTI3NDwv cGFnZXM+PHZvbHVtZT4xOTwvdm9sdW1lPjxudW1iZXI+NDwvbnVtYmVyPjxkYXRlcz48eWVhcj4x OTQ3PC95ZWFyPjwvZGF0ZXM+PGlzYm4+MDAwMy0yNzAwPC9pc2JuPjx1cmxzPjwvdXJscz48L3Jl Y29yZD48L0NpdGU+PENpdGU+PEF1dGhvcj5CYWFyPC9BdXRob3I+PFllYXI+MTk2NjwvWWVhcj48 UmVjTnVtPjczPC9SZWNOdW0+PHJlY29yZD48cmVjLW51bWJlcj43MzwvcmVjLW51bWJlcj48Zm9y ZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9InBkdjVhYTJhaDJ4NXRuZTV6ZWNwYXd6Z3oy eHByc3p3d3YyZCIgdGltZXN0YW1wPSIxNTI0OTE2OTI5Ij43Mzwva2V5PjwvZm9yZWlnbi1rZXlz PjxyZWYtdHlwZSBuYW1lPSJKb3VybmFsIEFydGljbGUiPjE3PC9yZWYtdHlwZT48Y29udHJpYnV0 b3JzPjxhdXRob3JzPjxhdXRob3I+QmFhciwgUzwvYXV0aG9yPjwvYXV0aG9ycz48L2NvbnRyaWJ1 dG9ycz48dGl0bGVzPjx0aXRsZT5UaGUgbWljcm8gZGV0ZXJtaW5hdGlvbiBvZiBjeWFuaWRlOiBJ dHMgYXBwbGljYXRpb24gdG8gdGhlIGFuYWx5c2lzIG9mIHdob2xlIGJsb29kPC90aXRsZT48c2Vj b25kYXJ5LXRpdGxlPkFuYWx5c3Q8L3NlY29uZGFyeS10aXRsZT48L3RpdGxlcz48cGVyaW9kaWNh bD48ZnVsbC10aXRsZT5BbmFseXN0PC9mdWxsLXRpdGxlPjwvcGVyaW9kaWNhbD48cGFnZXM+MjY4 LTI3MjwvcGFnZXM+PHZvbHVtZT45MTwvdm9sdW1lPjxudW1iZXI+MTA4MTwvbnVtYmVyPjxkYXRl cz48eWVhcj4xOTY2PC95ZWFyPjwvZGF0ZXM+PHVybHM+PC91cmxzPjwvcmVjb3JkPjwvQ2l0ZT48 Q2l0ZT48QXV0aG9yPk5hZ2FzaGltYTwvQXV0aG9yPjxZZWFyPjE5ODQ8L1llYXI+PFJlY051bT4x OTwvUmVjTnVtPjxyZWNvcmQ+PHJlYy1udW1iZXI+MTk8L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5 cz48a2V5IGFwcD0iRU4iIGRiLWlkPSJwZHY1YWEyYWgyeDV0bmU1emVjcGF3emd6MnhwcnN6d3d2 MmQiIHRpbWVzdGFtcD0iMTUyMzQzMzgyNyI+MTk8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5 cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0 aG9ycz48YXV0aG9yPk5hZ2FzaGltYSwgU2hpZ2VydTwvYXV0aG9yPjwvYXV0aG9ycz48L2NvbnRy aWJ1dG9ycz48dGl0bGVzPjx0aXRsZT5TaW11bHRhbmVvdXMgcmVhY3Rpb24gcmF0ZSBzcGVjdHJv cGhvdG9tZXRyaWMgZGV0ZXJtaW5hdGlvbiBvZiBjeWFuaWRlIGFuZCB0aGlvY3lhbmF0ZSBieSB1 c2Ugb2YgdGhlIHB5cmlkaW5lLWJhcmJpdHVyaWMgYWNpZCBtZXRob2Q8L3RpdGxlPjxzZWNvbmRh cnktdGl0bGU+QW5hbHl0aWNhbCBDaGVtaXN0cnk8L3NlY29uZGFyeS10aXRsZT48L3RpdGxlcz48 cGVyaW9kaWNhbD48ZnVsbC10aXRsZT5BbmFseXRpY2FsIENoZW1pc3RyeTwvZnVsbC10aXRsZT48 L3BlcmlvZGljYWw+PHBhZ2VzPjE5NDQtMTk0NzwvcGFnZXM+PHZvbHVtZT41Njwvdm9sdW1lPjxu dW1iZXI+MTE8L251bWJlcj48ZGF0ZXM+PHllYXI+MTk4NDwveWVhcj48L2RhdGVzPjxpc2JuPjAw MDMtMjcwMDwvaXNibj48dXJscz48L3VybHM+PC9yZWNvcmQ+PC9DaXRlPjxDaXRlPjxBdXRob3I+ TmFnYXNoaW1hPC9BdXRob3I+PFllYXI+MTk4MTwvWWVhcj48UmVjTnVtPjUzPC9SZWNOdW0+PHJl Y29yZD48cmVjLW51bWJlcj41MzwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJF TiIgZGItaWQ9InBkdjVhYTJhaDJ4NXRuZTV6ZWNwYXd6Z3oyeHByc3p3d3YyZCIgdGltZXN0YW1w PSIxNTIzOTA2Njg2Ij41Mzwva2V5PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3Vy bmFsIEFydGljbGUiPjE3PC9yZWYtdHlwZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+ TmFnYXNoaW1hLCBTaGlnZXJ1PC9hdXRob3I+PGF1dGhvcj5PemF3YSwgVGFrZWppcm88L2F1dGhv cj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRpdGxlcz48dGl0bGU+U3BlY3Ryb3Bob3RvbWV0 cmljIGRldGVybWluYXRpb24gb2YgY3lhbmlkZSB3aXRoIGlzb25pY290aW5pYyBhY2lkIGFuZCBi YXJiaXR1cmljIGFjaWQ8L3RpdGxlPjxzZWNvbmRhcnktdGl0bGU+SW50ZXJuYXRpb25hbCBKb3Vy bmFsIG9mIEVudmlyb25tZW50YWwgQW5hbHl0aWNhbCBDaGVtaXN0cnk8L3NlY29uZGFyeS10aXRs ZT48L3RpdGxlcz48cGVyaW9kaWNhbD48ZnVsbC10aXRsZT5JbnRlcm5hdGlvbmFsIEpvdXJuYWwg b2YgRW52aXJvbm1lbnRhbCBBbmFseXRpY2FsIENoZW1pc3RyeTwvZnVsbC10aXRsZT48L3Blcmlv ZGljYWw+PHBhZ2VzPjk5LTEwNjwvcGFnZXM+PHZvbHVtZT4xMDwvdm9sdW1lPjxudW1iZXI+Mjwv bnVtYmVyPjxkYXRlcz48eWVhcj4xOTgxPC95ZWFyPjwvZGF0ZXM+PGlzYm4+MDMwNi03MzE5PC9p c2JuPjx1cmxzPjwvdXJscz48L3JlY29yZD48L0NpdGU+PENpdGU+PEF1dGhvcj5MdW5kcXVpc3Q8 L0F1dGhvcj48WWVhcj4xOTg3PC9ZZWFyPjxSZWNOdW0+NzA8L1JlY051bT48cmVjb3JkPjxyZWMt bnVtYmVyPjcwPC9yZWMtbnVtYmVyPjxmb3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0i cGR2NWFhMmFoMng1dG5lNXplY3Bhd3pnejJ4cHJzend3djJkIiB0aW1lc3RhbXA9IjE1MjQ5MTUy MTEiPjcwPC9rZXk+PC9mb3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNs ZSI+MTc8L3JlZi10eXBlPjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5MdW5kcXVpc3Qs IFA8L2F1dGhvcj48YXV0aG9yPlJvc2xpbmcsIEhhbnM8L2F1dGhvcj48YXV0aG9yPlPDtnJibywg QjwvYXV0aG9yPjxhdXRob3I+VGliYmxpbmcsIExpdGE8L2F1dGhvcj48L2F1dGhvcnM+PC9jb250 cmlidXRvcnM+PHRpdGxlcz48dGl0bGU+Q3lhbmlkZSBjb25jZW50cmF0aW9ucyBpbiBibG9vZCBh ZnRlciBjaWdhcmV0dGUgc21va2luZywgYXMgZGV0ZXJtaW5lZCBieSBhIHNlbnNpdGl2ZSBmbHVv cmltZXRyaWMgbWV0aG9kPC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPkNsaW5pY2FsIGNoZW1pc3Ry eTwvc2Vjb25kYXJ5LXRpdGxlPjwvdGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPkNsaW5p Y2FsIGNoZW1pc3RyeTwvZnVsbC10aXRsZT48L3BlcmlvZGljYWw+PHBhZ2VzPjEyMjgtMTIzMDwv cGFnZXM+PHZvbHVtZT4zMzwvdm9sdW1lPjxudW1iZXI+NzwvbnVtYmVyPjxkYXRlcz48eWVhcj4x OTg3PC95ZWFyPjwvZGF0ZXM+PGlzYm4+MDAwOS05MTQ3PC9pc2JuPjx1cmxzPjwvdXJscz48L3Jl Y29yZD48L0NpdGU+PENpdGU+PEF1dGhvcj5MdW5kcXVpc3Q8L0F1dGhvcj48WWVhcj4xOTg5PC9Z ZWFyPjxSZWNOdW0+NzE8L1JlY051bT48cmVjb3JkPjxyZWMtbnVtYmVyPjcxPC9yZWMtbnVtYmVy Pjxmb3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0icGR2NWFhMmFoMng1dG5lNXplY3Bh d3pnejJ4cHJzend3djJkIiB0aW1lc3RhbXA9IjE1MjQ5MTU5MjEiPjcxPC9rZXk+PC9mb3JlaWdu LWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBlPjxjb250 cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5MdW5kcXVpc3QsIFBlcjwvYXV0aG9yPjxhdXRob3I+ U8O2cmJvLCBCbzwvYXV0aG9yPjwvYXV0aG9ycz48L2NvbnRyaWJ1dG9ycz48dGl0bGVzPjx0aXRs ZT5SYXBpZCBkZXRlcm1pbmF0aW9uIG9mIHRveGljIGN5YW5pZGUgY29uY2VudHJhdGlvbnMgaW4g Ymxvb2Q8L3RpdGxlPjxzZWNvbmRhcnktdGl0bGU+Q2xpbmljYWwgY2hlbWlzdHJ5PC9zZWNvbmRh cnktdGl0bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+Q2xpbmljYWwgY2hlbWlz dHJ5PC9mdWxsLXRpdGxlPjwvcGVyaW9kaWNhbD48cGFnZXM+NjE3LTYxOTwvcGFnZXM+PHZvbHVt ZT4zNTwvdm9sdW1lPjxudW1iZXI+NDwvbnVtYmVyPjxkYXRlcz48eWVhcj4xOTg5PC95ZWFyPjwv ZGF0ZXM+PGlzYm4+MDAwOS05MTQ3PC9pc2JuPjx1cmxzPjwvdXJscz48L3JlY29yZD48L0NpdGU+ PENpdGU+PEF1dGhvcj5EaXJpa29sdTwvQXV0aG9yPjxZZWFyPjIwMDM8L1llYXI+PFJlY051bT43 NTwvUmVjTnVtPjxyZWNvcmQ+PHJlYy1udW1iZXI+NzU8L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5 cz48a2V5IGFwcD0iRU4iIGRiLWlkPSJwZHY1YWEyYWgyeDV0bmU1emVjcGF3emd6MnhwcnN6d3d2 MmQiIHRpbWVzdGFtcD0iMTUyNDkxNzc5MSI+NzU8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5 cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0 aG9ycz48YXV0aG9yPkRpcmlrb2x1LCBMZXZlbnQ8L2F1dGhvcj48YXV0aG9yPkh1Z2hlcywgQ2hh cmxpZTwvYXV0aG9yPjxhdXRob3I+SGFya2lucywgRGFuPC9hdXRob3I+PGF1dGhvcj5Cb3lsZXMs IEplZmY8L2F1dGhvcj48YXV0aG9yPkJvc2tlbiwgSmVmZjwvYXV0aG9yPjxhdXRob3I+TGVobmVy LCBGcml0ejwvYXV0aG9yPjxhdXRob3I+VHJvcHBtYW5uLCBBbXk8L2F1dGhvcj48YXV0aG9yPk1j RG93ZWxsLCBLYXJlbjwvYXV0aG9yPjxhdXRob3I+VG9iaW4sIFRob21hczwvYXV0aG9yPjxhdXRo b3I+U2ViYXN0aWFuLCBNYW51IE08L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRp dGxlcz48dGl0bGU+VGhlIHRveGljb2tpbmV0aWNzIG9mIGN5YW5pZGUgYW5kIG1hbmRlbG9uaXRy aWxlIGluIHRoZSBob3JzZSBhbmQgdGhlaXIgcmVsZXZhbmNlIHRvIHRoZSBtYXJlIHJlcHJvZHVj dGl2ZSBsb3NzIHN5bmRyb21lPC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPlRveGljb2xvZ3kgbWVj aGFuaXNtcyBhbmQgbWV0aG9kczwvc2Vjb25kYXJ5LXRpdGxlPjwvdGl0bGVzPjxwZXJpb2RpY2Fs PjxmdWxsLXRpdGxlPlRveGljb2xvZ3kgbWVjaGFuaXNtcyBhbmQgbWV0aG9kczwvZnVsbC10aXRs ZT48L3BlcmlvZGljYWw+PHBhZ2VzPjE5OS0yMTE8L3BhZ2VzPjx2b2x1bWU+MTM8L3ZvbHVtZT48 bnVtYmVyPjM8L251bWJlcj48ZGF0ZXM+PHllYXI+MjAwMzwveWVhcj48L2RhdGVzPjxpc2JuPjE1 MzctNjUxNjwvaXNibj48dXJscz48L3VybHM+PC9yZWNvcmQ+PC9DaXRlPjwvRW5kTm90ZT5= ADDIN EN.CITE.DATA (Epstein, 1947, Baar, 1966, Nagashima, 1984, Nagashima and Ozawa, 1981, Lundquist et al., 1987, Lundquist and Sörbo, 1989, Dirikolu et al., 2003). Since thiocyanate interferes with the K?nig reaction by reacting with chloramine-T, it must be removed from the sample predated to the addition of chloramine-T ADDIN EN.CITE ;EndNote;;Cite;;Author;Jackson;/Author;;Year;2017;/Year;;RecNum;6;/RecNum;;DisplayText;(Jackson and Logue, 2017);/DisplayText;;record;;rec-number;6;/rec-number;;foreign-keys;;key app=”EN” db-id=”pdv5aa2ah2x5tne5zecpawzgz2xprszwwv2d” timestamp=”1523425835″;6;/key;;/foreign-keys;;ref-type name=”Journal Article”;17;/ref-type;;contributors;;authors;;author;Jackson, Randy;/author;;author;Logue, Brian A.;/author;;/authors;;/contributors;;titles;;title;A review of rapid and field-portable analytical techniques for the diagnosis of cyanide exposure;/title;;secondary-title;Analytica Chimica Acta;/secondary-title;;/titles;;periodical;;full-title;Analytica Chimica Acta;/full-title;;/periodical;;pages;18-39;/pages;;volume;960;/volume;;keywords;;keyword;Cyanide detection;/keyword;;keyword;Sensor;/keyword;;keyword;Cyanide poisoning diagnosis;/keyword;;keyword;Bioanalysis;/keyword;;/keywords;;dates;;year;2017;/year;;pub-dates;;date;2017/04/01/;/date;;/pub-dates;;/dates;;isbn;0003-2670;/isbn;;urls;;related-urls;;url;http://www.sciencedirect.com/science/article/pii/S0003267016315148;/url;;/related-urls;;/urls;;electronic-resource-num;https://doi.org/10.1016/j.aca.2016.12.039;/electronic-resource-num;;/record;;/Cite;;/EndNote;(Jackson and Logue, 2017).

Spectrophotometric methods based K?nig synthesis is the most commonly method used For the detection of small amounts of ionic cyanide, thiocyanate by reaction of cyanogen bromide or chloride with pyridine and an aromatic amine to form a dye than other method. Also method measures most nicotine metabolites, including cotinine and 3-hydroxy-cotinine, which were shown to be the major metabolites of nicotine in human urine ADDIN EN.CITE ;EndNote;;Cite;;Author;Pickert;/Author;;Year;1993;/Year;;RecNum;2;/RecNum;;DisplayText;(Pickert et al., 1993);/DisplayText;;record;;rec-number;2;/rec-number;;foreign-keys;;key app=”EN” db-id=”pdv5aa2ah2x5tne5zecpawzgz2xprszwwv2d” timestamp=”1523424143″;2;/key;;/foreign-keys;;ref-type name=”Journal Article”;17;/ref-type;;contributors;;authors;;author;Pickert, Andreas;/author;;author;Lingenfelser, Thomas;/author;;author;Pickert, Christiane;/author;;author;Birbaumer, Niels;/author;;author;Overkamp, Dietrich;/author;;author;Eggstein, Manfred;/author;;/authors;;/contributors;;titles;;title;Comparison of a mechanized version of the ‘König’ reaction and a fluorescence polarization immunoassay for the determination of nicotine metabolites in urine;/title;;secondary-title;Clinica Chimica Acta;/secondary-title;;/titles;;periodical;;full-title;Clinica Chimica Acta;/full-title;;/periodical;;pages;143-152;/pages;;volume;217;/volume;;number;2;/number;;keywords;;keyword;Smoking;/keyword;;keyword;Cotinine determination;/keyword;;keyword;’König’ reaction;/keyword;;keyword;Fluorescence polarization immunoassay;/keyword;;keyword;Automated analysis;/keyword;;/keywords;;dates;;year;1993;/year;;pub-dates;;date;1993/08/31/;/date;;/pub-dates;;/dates;;isbn;0009-8981;/isbn;;urls;;related-urls;;url;http://www.sciencedirect.com/science/article/pii/0009898193901606;/url;;/related-urls;;/urls;;electronic-resource-num;https://doi.org/10.1016/0009-8981(93)90160-6;/electronic-resource-num;;/record;;/Cite;;/EndNote;(Pickert et al., 1993).One of the major cyanide sources in daily human activity is the inhaled smoke by cigarette smokers, causing increased thiocyanate ion levels in human fluid which is the main product of the metabolism of cyanides. Although the toxicity of thiocyanate is significantly less than that of cyanide, chronically elevated levels of thiocyanate can block the uptake of iodine by the thyroid gland, thereby lowering the formation of thyroxine ADDIN EN.CITE ;EndNote;;Cite;;Author;Themelis;/Author;;Year;2002;/Year;;RecNum;58;/RecNum;;DisplayText;(Themelis and Tzanavaras, 2002);/DisplayText;;record;;rec-number;58;/rec-number;;foreign-keys;;key app=”EN” db-id=”pdv5aa2ah2x5tne5zecpawzgz2xprszwwv2d” timestamp=”1524380059″;58;/key;;/foreign-keys;;ref-type name=”Journal Article”;17;/ref-type;;contributors;;authors;;author;Themelis, Demetrius G.;/author;;author;Tzanavaras, Paraskevas D.;/author;;/authors;;/contributors;;titles;;title;Solvent extraction flow-injection manifold for the simultaneous spectrophotometric determination of free cyanide and thiocyanate ions based upon on-line masking of cyanides by formaldehyde;/title;;secondary-title;Analytica Chimica Acta;/secondary-title;;/titles;;periodical;;full-title;Analytica Chimica Acta;/full-title;;/periodical;;pages;295-302;/pages;;volume;452;/volume;;number;2;/number;;keywords;;keyword;Solvent extraction;/keyword;;keyword;Flow-injection spectrophotometry;/keyword;;keyword;Cyanide;/keyword;;keyword;Thiocyanate;/keyword;;keyword;Simultaneous determination;/keyword;;keyword;Human saliva;/keyword;;keyword;Pralidoxime;/keyword;;/keywords;;dates;;year;2002;/year;;pub-dates;;date;2002/02/11/;/date;;/pub-dates;;/dates;;isbn;0003-2670;/isbn;;urls;;related-urls;;url;http://www.sciencedirect.com/science/article/pii/S0003267001012260;/url;;/related-urls;;/urls;;electronic-resource-num;https://doi.org/10.1016/S0003-2670(01)01226-0;/electronic-resource-num;;/record;;/Cite;;/EndNote;(Themelis and Tzanavaras, 2002). The aim of this article is to show the enormous number of analytical method to the determination of cyanide, thiocyanid and nicotinic compound. Figure 1: The chemistry of the colorimetry determination of cyanide. Cyanide is converted to cyanogen chloride (ClCN) by chloramine-T.

ClCN is then reacted with pyridine to formN-cyanopyridinium chloride (K?nig reaction), which undergoes hydrolysis to glutaconic aldehyde, the aldehyde is couple with barbituric acid to form a colored product. 2. Cyanide The cyanide ion consists of a carbon atom triply bonded to a nitrogen atom; it is a highly toxic chemical that is used in many industries, because it ability to complex to a range of metals has been utilized in several industrial processes including mining for the extraction of ores, metallurgy, electroplating , photo graphic industry and in the production of organic chemicals such pesticide production ADDIN EN.CITE ;EndNote;;Cite;;Author;Noroozifar;/Author;;Year;2005;/Year;;RecNum;65;/RecNum;;DisplayText;(Noroozifar et al., 2005);/DisplayText;;record;;rec-number;65;/rec-number;;foreign-keys;;key app=”EN” db-id=”pdv5aa2ah2x5tne5zecpawzgz2xprszwwv2d” timestamp=”1524903035″;65;/key;;/foreign-keys;;ref-type name=”Journal Article”;17;/ref-type;;contributors;;authors;;author;Noroozifar, M.;/author;;author;Khorasani-Motlagh, M.;/author;;author;Hosseini, S. N.;/author;;/authors;;/contributors;;titles;;title;Flow injection analysis–flame atomic absorption spectrometry system for indirect determination of cyanide using cadmium carbonate as a new solid-phase reactor;/title;;secondary-title;Analytica Chimica Acta;/secondary-title;;/titles;;periodical;;full-title;Analytica Chimica Acta;/full-title;;/periodical;;pages;269-273;/pages;;volume;528;/volume;;number;2;/number;;keywords;;keyword;Indirect determination;/keyword;;keyword;Cyanide;/keyword;;keyword;Cadmium carbonate;/keyword;;keyword;Flow injection analysis;/keyword;;keyword;Flame atomic absorption spectrometry;/keyword;;/keywords;;dates;;year;2005;/year;;pub-dates;;date;2005/01/10/;/date;;/pub-dates;;/dates;;isbn;0003-2670;/isbn;;urls;;related-urls;;url;http://www.sciencedirect.com/science/article/pii/S0003267004014096;/url;;/related-urls;;/urls;;electronic-resource-num;https://doi.org/10.1016/j.aca.2004.10.056;/electronic-resource-num;;/record;;/Cite;;/EndNote;(Noroozifar et al., 2005). May be released into the aquatic environment through waste flowed from numerouse industries and processes ADDIN EN.CITE ;EndNote;;Cite;;Author;Kang;/Author;;Year;2014;/Year;;RecNum;40;/RecNum;;DisplayText;(Kang and Shin, 2014);/DisplayText;;record;;rec-number;40;/rec-number;;foreign-keys;;key app=”EN” db-id=”pdv5aa2ah2x5tne5zecpawzgz2xprszwwv2d” timestamp=”1523602091″;40;/key;;/foreign-keys;;ref-type name=”Journal Article”;17;/ref-type;;contributors;;authors;;author;Kang, Hye-In;/author;;author;Shin, Ho-Sang;/author;;/authors;;/contributors;;titles;;title;Ultra-sensitive determination of cyanide in surface water by gas chromatography–tandem mass spectrometry after derivatization with 2-(dimethylamino) ethanethiol;/title;;secondary-title;Analytica chimica acta;/secondary-title;;/titles;;periodical;;full-title;Analytica Chimica Acta;/full-title;;/periodical;;pages;168-173;/pages;;volume;852;/volume;;dates;;year;2014;/year;;/dates;;isbn;0003-2670;/isbn;;urls;;/urls;;/record;;/Cite;;/EndNote;(Kang and Shin, 2014).

Also many substances are potential sources of cyanide exposure, including edible and non-edible plants (e.g., cassava), industrial operations (e.g., plastics processing), fires, and cigarette smoke. The primary natural source of cyanide poisoning is from plants, other natural sources include volcanoes, bacteria, and fungi ADDIN EN.CITE ;EndNote;;Cite;;Author;Logue;/Author;;Year;2010;/Year;;RecNum;13;/RecNum;;DisplayText;(Logue et al., 2010);/DisplayText;;record;;rec-number;13;/rec-number;;foreign-keys;;key app=”EN” db-id=”pdv5aa2ah2x5tne5zecpawzgz2xprszwwv2d” timestamp=”1523430358″;13;/key;;/foreign-keys;;ref-type name=”Journal Article”;17;/ref-type;;contributors;;authors;;author;Logue, Brian A;/author;;author;Hinkens, Diane M;/author;;author;Baskin, Steven I;/author;;author;Rockwood, Gary A;/author;;/authors;;/contributors;;titles;;title;The analysis of cyanide and its breakdown products in biological samples;/title;;secondary-title;Critical Reviews in Analytical Chemistry;/secondary-title;;/titles;;periodical;;full-title;Critical Reviews in Analytical Chemistry;/full-title;;/periodical;;pages;122-147;/pages;;volume;40;/volume;;number;2;/number;;dates;;year;2010;/year;;/dates;;isbn;1040-8347;/isbn;;urls;;/urls;;/record;;/Cite;;/EndNote;(Logue et al., 2010). Although there are other chemical forms of cyanide (e.g. cyanide ion), it is Hydrogen cyanide (HCN) vapor is extremely dangerous to human beings and animals as it inhibits the consumption of oxygen by body tissues ADDIN EN.CITE ;EndNote;;Cite;;Author;Yang;/Author;;Year;2011;/Year;;RecNum;32;/RecNum;;DisplayText;(Yang et al., 2011);/DisplayText;;record;;rec-number;32;/rec-number;;foreign-keys;;key app=”EN” db-id=”pdv5aa2ah2x5tne5zecpawzgz2xprszwwv2d” timestamp=”1523462991″;32;/key;;/foreign-keys;;ref-type name=”Journal Article”;17;/ref-type;;contributors;;authors;;author;Yang, Mingqing;/author;;author;He, Junhui;/author;;author;Hu, Xiaochun;/author;;author;Yan, Chunxiao;/author;;author;Cheng, Zhenxing;/author;;author;Zhao, Yingqiang;/author;;author;Zuo, Guomin;/author;;/authors;;/contributors;;titles;;title;Copper oxide nanoparticle sensors for hydrogen cyanide detection: Unprecedented selectivity and sensitivity;/title;;secondary-title;Sensors and Actuators B: Chemical;/secondary-title;;/titles;;periodical;;full-title;Sensors and Actuators B: Chemical;/full-title;;/periodical;;pages;692-698;/pages;;volume;155;/volume;;number;2;/number;;keywords;;keyword;Copper oxide;/keyword;;keyword;Quartz crystal microbalance;/keyword;;keyword;Gas sensor;/keyword;;keyword;Hydrogen cyanide;/keyword;;/keywords;;dates;;year;2011;/year;;pub-dates;;date;2011/07/20/;/date;;/pub-dates;;/dates;;isbn;0925-4005;/isbn;;urls;;related-urls;;url;http://www.sciencedirect.com/science/article/pii/S0925400511000487;/url;;/related-urls;;/urls;;electronic-resource-num;https://doi.org/10.1016/j.snb.2011.01.031;/electronic-resource-num;;/record;;/Cite;;/EndNote;(Yang et al., 2011).

The heart and brain are particularly susceptible to the harmful effects of HCN, as they are organs with high rates of aerobic metabolism ADDIN EN.CITE ;EndNote;;Cite;;Author;Porter;/Author;;Year;2007;/Year;;RecNum;31;/RecNum;;DisplayText;(Porter et al., 2007);/DisplayText;;record;;rec-number;31;/rec-number;;foreign-keys;;key app=”EN” db-id=”pdv5aa2ah2x5tne5zecpawzgz2xprszwwv2d” timestamp=”1523462786″;31;/key;;/foreign-keys;;ref-type name=”Journal Article”;17;/ref-type;;contributors;;authors;;author;Porter, Timothy L.;/author;;author;Vail, Timothy L.;/author;;author;Eastman, Michael P.;/author;;author;Stewart, Ray;/author;;author;Reed, Jim;/author;;author;Venedam, Richard;/author;;author;Delinger, William;/author;;/authors;;/contributors;;titles;;title;A solid-state sensor platform for the detection of hydrogen cyanide gas;/title;;secondary-title;Sensors and Actuators B: Chemical;/secondary-title;;/titles;;periodical;;full-title;Sensors and Actuators B: Chemical;/full-title;;/periodical;;pages;313-317;/pages;;volume;123;/volume;;number;1;/number;;keywords;;keyword;Piezoresistive;/keyword;;keyword;Microcantilever;/keyword;;keyword;Cyanide;/keyword;;keyword;Embedded;/keyword;;/keywords;;dates;;year;2007;/year;;pub-dates;;date;2007/04/10/;/date;;/pub-dates;;/dates;;isbn;0925-4005;/isbn;;urls;;related-urls;;url;http://www.sciencedirect.com/science/article/pii/S0925400506005727;/url;;/related-urls;;/urls;;electronic-resource-num;https://doi.org/10.1016/j.snb.2006.08.025;/electronic-resource-num;;/record;;/Cite;;/EndNote;(Porter et al., 2007). There toxicity is caused by its affinity to iron in the mitochondrial cytochrome C, and blocks the end stage of electron transport chain which results in cellular hypoxia and changes leading to ATP depletion, metabolic acidosis and consequently to cellular death ADDIN EN.CITE ;EndNote;;Cite;;Author;Narkowicz;/Author;;Year;2013;/Year;;RecNum;54;/RecNum;;DisplayText;(Narkowicz et al., 2013);/DisplayText;;record;;rec-number;54;/rec-number;;foreign-keys;;key app=”EN” db-id=”pdv5aa2ah2x5tne5zecpawzgz2xprszwwv2d” timestamp=”1523908017″;54;/key;;/foreign-keys;;ref-type name=”Journal Article”;17;/ref-type;;contributors;;authors;;author;Narkowicz, Sylwia;/author;;author;Polkowska, ?aneta;/author;;author;Namie?nik, Jacek;/author;;/authors;;/contributors;;titles;;title;Determination of formaldehyde and cyanide ion in human nasal discharge by using simple spectrophotometric methods;/title;;secondary-title;Open Chemistry;/secondary-title;;/titles;;periodical;;full-title;Open Chemistry;/full-title;;/periodical;;pages;16-24;/pages;;volume;11;/volume;;number;1;/number;;dates;;year;2013;/year;;/dates;;isbn;2391-5420;/isbn;;urls;;/urls;;/record;;/Cite;;/EndNote;(Narkowicz et al., 2013). The extreme toxicity of cyanide in physiological systems, as well as the continuing environmental concern caused by its widespread industrial use, has led to extensive research into the development of cyanide detection methods ADDIN EN.CITE ;EndNote;;Cite;;Author;Surleva;/Author;;Year;2016;/Year;;RecNum;39;/RecNum;;DisplayText;(Surleva et al., 2016);/DisplayText;;record;;rec-number;39;/rec-number;;foreign-keys;;key app=”EN” db-id=”pdv5aa2ah2x5tne5zecpawzgz2xprszwwv2d” timestamp=”1523601865″;39;/key;;/foreign-keys;;ref-type name=”Journal Article”;17;/ref-type;;contributors;;authors;;author;Surleva, Andriana;/author;;author;Zaharia, Marius;/author;;author;Pintilie, Olga;/author;;author;Sandu, Ion;/author;;author;Tudorachi, Lucia;/author;;author;Gradinaru, Robert Vasile;/author;;/authors;;/contributors;;titles;;title;Improved ninhydrin-based reagent for spectrophotometric determination of ppb levels of cyanide;/title;;secondary-title;Environmental Forensics;/secondary-title;;/titles;;periodical;;full-title;Environmental Forensics;/full-title;;/periodical;;pages;48-58;/pages;;volume;17;/volume;;number;1;/number;;dates;;year;2016;/year;;/dates;;isbn;1527-5922;/isbn;;urls;;/urls;;/record;;/Cite;;/EndNote;(Surleva et al., 2016). The majority of the population is exposed to very low levels of cyanide in the general environment ADDIN EN.CITE ;EndNote;;Cite;;Author;Surleva;/Author;;Year;2012;/Year;;RecNum;51;/RecNum;;DisplayText;(Surleva et al., 2012);/DisplayText;;record;;rec-number;51;/rec-number;;foreign-keys;;key app=”EN” db-id=”pdv5aa2ah2x5tne5zecpawzgz2xprszwwv2d” timestamp=”1523781022″;51;/key;;/foreign-keys;;ref-type name=”Journal Article”;17;/ref-type;;contributors;;authors;;author;Surleva, Andriana;/author;;author;Gradinaru, Robert;/author;;author;Drochioiu, Gabi;/author;;/authors;;/contributors;;titles;;title;Cyanide poisoning: from physiology to forensic analytical chemistry;/title;;secondary-title;Int. J. Crim.

Invest;/secondary-title;;/titles;;periodical;;full-title;Int. J. Crim. Invest;/full-title;;/periodical;;pages;79;/pages;;volume;2;/volume;;dates;;year;2012;/year;;/dates;;urls;;/urls;;/record;;/Cite;;/EndNote;(Surleva et al., 2012). Once absorbed, cyanide is quickly transferred to the blood and metabolized by a number of processes (Figure 2) ADDIN EN.CITE ;EndNote;;Cite;;Author;Egekeze;/Author;;Year;1980;/Year;;RecNum;30;/RecNum;;DisplayText;(Egekeze and Oehme, 1980);/DisplayText;;record;;rec-number;30;/rec-number;;foreign-keys;;key app=”EN” db-id=”pdv5aa2ah2x5tne5zecpawzgz2xprszwwv2d” timestamp=”1523457201″;30;/key;;/foreign-keys;;ref-type name=”Journal Article”;17;/ref-type;;contributors;;authors;;author;Egekeze, John O;/author;;author;Oehme, Frederick W;/author;;/authors;;/contributors;;titles;;title;Cyanides and their toxicity: a literature review;/title;;secondary-title;Veterinary Quarterly;/secondary-title;;/titles;;periodical;;full-title;Veterinary Quarterly;/full-title;;/periodical;;pages;104-114;/pages;;volume;2;/volume;;number;2;/number;;dates;;year;1980;/year;;/dates;;isbn;0165-2176;/isbn;;urls;;/urls;;/record;;/Cite;;/EndNote;(Egekeze and Oehme, 1980). The analysis of biological matrices, specifically urine and blood, to verify exposure to cyanide is important to determine past exposure to cyanide.

Due to its volatility hydrogen cyanide rapidly dissipates from open areas ADDIN EN.CITE ;EndNote;;Cite;;Author;Logue;/Author;;Year;2005;/Year;;RecNum;64;/RecNum;;DisplayText;(Logue et al., 2005);/DisplayText;;record;;rec-number;64;/rec-number;;foreign-keys;;key app=”EN” db-id=”pdv5aa2ah2x5tne5zecpawzgz2xprszwwv2d” timestamp=”1524902474″;64;/key;;/foreign-keys;;ref-type name=”Journal Article”;17;/ref-type;;contributors;;authors;;author;Logue, Brian A.;/author;;author;Kirschten, Nicholas P.;/author;;author;Petrikovics, Ilona;/author;;author;Moser, Matthew A.;/author;;author;Rockwood, Gary A.;/author;;author;Baskin, Steven I.;/author;;/authors;;/contributors;;titles;;title;Determination of the cyanide metabolite 2-aminothiazoline-4-carboxylic acid in urine and plasma by gas chromatography–mass spectrometry;/title;;secondary-title;Journal of Chromatography B;/secondary-title;;/titles;;periodical;;full-title;Journal of Chromatography B;/full-title;;/periodical;;pages;237-244;/pages;;volume;819;/volume;;number;2;/number;;keywords;;keyword;Cyanide;/keyword;;keyword;2-Aminothiazoline-4-carboxylic acid;/keyword;;keyword;GC–MS;/keyword;;keyword;Chemical warfare agent;/keyword;;/keywords;;dates;;year;2005;/year;;pub-dates;;date;2005/05/25/;/date;;/pub-dates;;/dates;;isbn;1570-0232;/isbn;;urls;;related-urls;;url;http://www.sciencedirect.com/science/article/pii/S1570023205001947;/url;;/related-urls;;/urls;;electronic-resource-num;https://doi.org/10.1016/j.jchromb.2005.01.045;/electronic-resource-num;;/record;;/Cite;;/EndNote;(Logue et al., 2005). The analysis of cyanide in biological fluids is of attentions because cyanide acts not only as an acute toxicant, which binds to and inhibits the activity of cytochrome oxidase, but also as a chronic toxicant ADDIN EN.CITE ;EndNote;;Cite;;Author;Chinaka;/Author;;Year;1998;/Year;;RecNum;7;/RecNum;;DisplayText;(Chinaka et al., 1998);/DisplayText;;record;;rec-number;7;/rec-number;;foreign-keys;;key app=”EN” db-id=”pdv5aa2ah2x5tne5zecpawzgz2xprszwwv2d” timestamp=”1523428920″;7;/key;;/foreign-keys;;ref-type name=”Journal Article”;17;/ref-type;;contributors;;authors;;author;Chinaka, Satoshi;/author;;author;Takayama, Nariaki;/author;;author;Michigami, Yoshimasa;/author;;author;Ueda, Kazumasa;/author;;/authors;;/contributors;;titles;;title;Simultaneous determination of cyanide and thiocyanate in blood by ion chromatography with fluorescence and ultraviolet detection;/title;;secondary-title;Journal of Chromatography B: Biomedical Sciences and Applications;/secondary-title;;/titles;;periodical;;full-title;Journal of Chromatography B: Biomedical Sciences and Applications;/full-title;;/periodical;;pages;353-359;/pages;;volume;713;/volume;;number;2;/number;;keywords;;keyword;Cyanide;/keyword;;keyword;Thiocyanate;/keyword;;/keywords;;dates;;year;1998;/year;;pub-dates;;date;1998/08/25/;/date;;/pub-dates;;/dates;;isbn;0378-4347;/isbn;;urls;;related-urls;;url;http://www.sciencedirect.com/science/article/pii/S0378434798001765;/url;;/related-urls;;/urls;;electronic-resource-num;https://doi.org/10.1016/S0378-4347(98)00176-5;/electronic-resource-num;;/record;;/Cite;;/EndNote;(Chinaka et al., 1998). While the majority of absorbed cyanide is excreted in the urine as thiocyanate, small amounts of free cyanide may also be excreted by the lungs, sweat and saliva. Plasma half-life of 20 min to 1 hour has been estimated for cyanides in humans ADDIN EN.CITE ;EndNote;;Cite;;Author;Pritchard;/Author;;Year;2007;/Year;;RecNum;50;/RecNum;;DisplayText;(Pritchard, 2007);/DisplayText;;record;;rec-number;50;/rec-number;;foreign-keys;;key app=”EN” db-id=”pdv5aa2ah2x5tne5zecpawzgz2xprszwwv2d” timestamp=”1523720325″;50;/key;;/foreign-keys;;ref-type name=”Journal Article”;17;/ref-type;;contributors;;authors;;author;Pritchard, JD;/author;;/authors;;/contributors;;titles;;title;Hydrogen cyanide toxicological overview;/title;;secondary-title;Health Protection Agency, CHAPD HQ;/secondary-title;;/titles;;periodical;;full-title;Health Protection Agency, CHAPD HQ;/full-title;;/periodical;;dates;;year;2007;/year;;/dates;;urls;;/urls;;/record;;/Cite;;/EndNote;(Pritchard, 2007) .

Figure 2: The fundamental processes including in the metabolism of cyanide and treatment of cyanide poisoning. 3. Thiocyanate Thiocyanate is an important metabolic product of hydrogen cyanide which is generated by tobacco pyrolysis, the hydrogen cyanide being converted by the enzyme thiosulfate transferase (rhodanese) mainly in liver mitochondria ADDIN EN.CITE ;EndNote;;Cite;;Author;Pre;/Author;;Year;1991;/Year;;RecNum;57;/RecNum;;DisplayText;(Pre and Vassy, 1991);/DisplayText;;record;;rec-number;57;/rec-number;;foreign-keys;;key app=”EN” db-id=”pdv5aa2ah2x5tne5zecpawzgz2xprszwwv2d” timestamp=”1524379829″;57;/key;;/foreign-keys;;ref-type name=”Journal Article”;17;/ref-type;;contributors;;authors;;author;Pre, Jacques;/author;;author;Vassy, Roger;/author;;/authors;;/contributors;;titles;;title;Urine thiocyanate: creatinine ratio as a reliable indicator of cigarette smoking;/title;;secondary-title;Clinica chimica acta;/secondary-title;;/titles;;periodical;;full-title;Clinica Chimica Acta;/full-title;;/periodical;;pages;87-94;/pages;;volume;204;/volume;;number;1-3;/number;;dates;;year;1991;/year;;/dates;;isbn;0009-8981;/isbn;;urls;;/urls;;/record;;/Cite;;/EndNote;(Pre and Vassy, 1991). usually it present in low concentrations in human serum, urine and saliva as a result of the digestion of some vegetables containing glucosinolates such as (cabbage) or by intake of thiocyanate containing foods such as milk, and Higher concentration of this ion, which is a metabolic product of cyanide, arises from tobacco smoke ADDIN EN.CITE ;EndNote;;Cite;;Author;Glatz;/Author;;Year;2001;/Year;;RecNum;14;/RecNum;;DisplayText;(Glatz et al., 2001);/DisplayText;;record;;rec-number;14;/rec-number;;foreign-keys;;key app=”EN” db-id=”pdv5aa2ah2x5tne5zecpawzgz2xprszwwv2d” timestamp=”1523430522″;14;/key;;/foreign-keys;;ref-type name=”Journal Article”;17;/ref-type;;contributors;;authors;;author;Glatz, Zden?k;/author;;author;Nováková, So?a;/author;;author;Št?rbová, Hana;/author;;/authors;;/contributors;;titles;;title;Analysis of thiocyanate in biological fluids by capillary zone electrophoresis;/title;;secondary-title;Journal of Chromatography A;/secondary-title;;/titles;;periodical;;full-title;Journal of Chromatography A;/full-title;;/periodical;;pages;273-277;/pages;;volume;916;/volume;;number;1;/number;;keywords;;keyword;Thiocyanate;/keyword;;keyword;Inorganic anions;/keyword;;/keywords;;dates;;year;2001;/year;;pub-dates;;date;2001/05/04/;/date;;/pub-dates;;/dates;;isbn;0021-9673;/isbn;;urls;;related-urls;;url;http://www.sciencedirect.com/science/article/pii/S0021967300012383;/url;;/related-urls;;/urls;;electronic-resource-num;https://doi.org/10.1016/S0021-9673(00)01238-3;/electronic-resource-num;;/record;;/Cite;;/EndNote;(Glatz et al., 2001).

But it presence in the body fluids cannot be ruled out clinically, since a large dose of thiocyanate as a hypotensive agent caused cyanide poisoning. Therefore, an accurate and reliable method for the determination of thiocyanate in biological sample is desired ADDIN EN.CITE ;EndNote;;Cite;;Author;Ensafi;/Author;;Year;1995;/Year;;RecNum;59;/RecNum;;DisplayText;(Ensafi and Tajebakhsh-E-Ardakany, 1995);/DisplayText;;record;;rec-number;59;/rec-number;;foreign-keys;;key app=”EN” db-id=”pdv5aa2ah2x5tne5zecpawzgz2xprszwwv2d” timestamp=”1524398349″;59;/key;;/foreign-keys;;ref-type name=”Journal Article”;17;/ref-type;;contributors;;authors;;author;Ensafi, Ali A;/author;;author;Tajebakhsh-E-Ardakany, J;/author;;/authors;;/contributors;;titles;;title;Determination of thiocyanate at the nanogram level by a kinetic method;/title;;secondary-title;Analytical letters;/secondary-title;;/titles;;periodical;;full-title;Analytical letters;/full-title;;/periodical;;pages;731-747;/pages;;volume;28;/volume;;number;4;/number;;dates;;year;1995;/year;;/dates;;isbn;0003-2719;/isbn;;urls;;/urls;;/record;;/Cite;;/EndNote;(Ensafi and Tajebakhsh-E-Ardakany, 1995). And there concentration in body fluid is considered to be a good indicator for drug monitoring in patients treated with cyano-containing drug such as sodium nitroprusside, the blood concentrations of SCN- can also be used for differentiating between smoker and nonsmoker ADDIN EN.CITE ;EndNote;;Cite;;Author;Chen;/Author;;Year;1996;/Year;;RecNum;11;/RecNum;;DisplayText;(Chen et al., 1996);/DisplayText;;record;;rec-number;11;/rec-number;;foreign-keys;;key app=”EN” db-id=”pdv5aa2ah2x5tne5zecpawzgz2xprszwwv2d” timestamp=”1523429828″;11;/key;;/foreign-keys;;ref-type name=”Journal Article”;17;/ref-type;;contributors;;authors;;author;Chen, Su-Hwei;/author;;author;Yang, Zi-Yuan;/author;;author;Wu, Hsin-Lung;/author;;author;Kou, Hwang-Shang;/author;;author;Lin, Shun-Jin;/author;;/authors;;/contributors;;titles;;title;Determination of thiocyanate anion by high-performance liquid chromatography with fluorimetric detection;/title;;secondary-title;Journal of analytical toxicology;/secondary-title;;/titles;;periodical;;full-title;Journal of analytical toxicology;/full-title;;/periodical;;pages;38-42;/pages;;volume;20;/volume;;number;1;/number;;dates;;year;1996;/year;;/dates;;isbn;1945-2403;/isbn;;urls;;/urls;;/record;;/Cite;;/EndNote;(Chen et al., 1996). Thiocyanate (SCN-) as a negative ion is present in industrial wastewater, environmental water and organism metabolites .The major thiocyanate pollution is generated by the reaction of free cyanide with sulfur during the coal conversion (e.g gasification, refining, coking and liquefaction) and the metallurgical process ADDIN EN.CITE ;EndNote;;Cite;;Author;Jafari;/Author;;Year;2010;/Year;;RecNum;23;/RecNum;;DisplayText;(Jafari and Javaheri, 2010);/DisplayText;;record;;rec-number;23;/rec-number;;foreign-keys;;key app=”EN” db-id=”pdv5aa2ah2x5tne5zecpawzgz2xprszwwv2d” timestamp=”1523434752″;23;/key;;/foreign-keys;;ref-type name=”Journal Article”;17;/ref-type;;contributors;;authors;;author;Jafari, MT;/author;;author;Javaheri, M;/author;;/authors;;/contributors;;titles;;title;Selective method based on negative electrospray ionization ion mobility spectrometry for direct analysis of salivary thiocyanate;/title;;secondary-title;Analytical chemistry;/secondary-title;;/titles;;periodical;;full-title;Analytical Chemistry;/full-title;;/periodical;;pages;6721-6725;/pages;;volume;82;/volume;;number;15;/number;;dates;;year;2010;/year;;/dates;;isbn;0003-2700;/isbn;;urls;;/urls;;/record;;/Cite;;/EndNote;(Jafari and Javaheri, 2010). 4. Analytical method based on k?nig reaction Several methods have been reported for the detection of cyanide, thiocyanate and nicotinic acid based on the K?nig reaction.

A spectrophotometry method is most available which is developed by Aldridge and Epstein have been most often used. Both of these methods are based on the K?nig reaction for the synthesis of pyridine dyestuffs. Bark and Hajson PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5CYXJrPC9BdXRob3I+PFllYXI+MTk2NDwvWWVhcj48UmVj TnVtPjgxPC9SZWNOdW0+PERpc3BsYXlUZXh0PihCYXJrIGFuZCBIaWdzb24sIDE5NjRhLCBCYXJr IGFuZCBIaWdzb24sIDE5NjRiKTwvRGlzcGxheVRleHQ+PHJlY29yZD48cmVjLW51bWJlcj44MTwv cmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9InBkdjVhYTJhaDJ4 NXRuZTV6ZWNwYXd6Z3oyeHByc3p3d3YyZCIgdGltZXN0YW1wPSIxNTI0OTI1NDU2Ij44MTwva2V5 PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3VybmFsIEFydGljbGUiPjE3PC9yZWYt dHlwZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+QmFyaywgTC4gUy48L2F1dGhvcj48 YXV0aG9yPkhpZ3NvbiwgSC4gRy48L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRp dGxlcz48dGl0bGU+SW52ZXN0aWdhdGlvbiBvZiByZWFnZW50cyBmb3IgdGhlIGNvbG9yaW1ldHJp YyBkZXRlcm1pbmF0aW9uIG9mIHNtYWxsIGFtb3VudHMgb2YgY3lhbmlkZS1JSTExUGFydCBJOiBz ZWUgcmVmZXJlbmNlIDQuOiBBIHByb3Bvc2VkIG1ldGhvZCBmb3IgdHJhY2UgY3lhbmlkZSBpbiB3 YXRlcnM8L3RpdGxlPjxzZWNvbmRhcnktdGl0bGU+VGFsYW50YTwvc2Vjb25kYXJ5LXRpdGxlPjwv dGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPlRhbGFudGE8L2Z1bGwtdGl0bGU+PC9wZXJp b2RpY2FsPjxwYWdlcz42MjEtNjMxPC9wYWdlcz48dm9sdW1lPjExPC92b2x1bWU+PG51bWJlcj4z PC9udW1iZXI+PGRhdGVzPjx5ZWFyPjE5NjQ8L3llYXI+PHB1Yi1kYXRlcz48ZGF0ZT4xOTY0LzAz LzAxLzwvZGF0ZT48L3B1Yi1kYXRlcz48L2RhdGVzPjxpc2JuPjAwMzktOTE0MDwvaXNibj48dXJs cz48cmVsYXRlZC11cmxzPjx1cmw+aHR0cDovL3d3dy5zY2llbmNlZGlyZWN0LmNvbS9zY2llbmNl L2FydGljbGUvcGlpLzAwMzk5MTQwNjQ4MDA3MzQ8L3VybD48L3JlbGF0ZWQtdXJscz48L3VybHM+ PGVsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPmh0dHBzOi8vZG9pLm9yZy8xMC4xMDE2LzAwMzktOTE0 MCg2NCk4MDA3My00PC9lbGVjdHJvbmljLXJlc291cmNlLW51bT48L3JlY29yZD48L0NpdGU+PENp dGU+PEF1dGhvcj5CYXJrPC9BdXRob3I+PFllYXI+MTk2NDwvWWVhcj48UmVjTnVtPjM4PC9SZWNO dW0+PHJlY29yZD48cmVjLW51bWJlcj4zODwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkg YXBwPSJFTiIgZGItaWQ9InBkdjVhYTJhaDJ4NXRuZTV6ZWNwYXd6Z3oyeHByc3p3d3YyZCIgdGlt ZXN0YW1wPSIxNTIzNjAxNDkxIj4zODwva2V5PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1l PSJKb3VybmFsIEFydGljbGUiPjE3PC9yZWYtdHlwZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxh dXRob3I+QmFyaywgTC4gUy48L2F1dGhvcj48YXV0aG9yPkhpZ3NvbiwgSC4gRy48L2F1dGhvcj48 L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRpdGxlcz48dGl0bGU+SW52ZXN0aWdhdGlvbiBvZiBy ZWFnZW50cyBmb3IgdGhlIGNvbG9yaW1ldHJpYyBkZXRlcm1pbmF0aW9uIG9mIHNtYWxsIGFtb3Vu dHMgb2YgY3lhbmlkZeKAlEk8L3RpdGxlPjxzZWNvbmRhcnktdGl0bGU+VGFsYW50YTwvc2Vjb25k YXJ5LXRpdGxlPjwvdGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPlRhbGFudGE8L2Z1bGwt dGl0bGU+PC9wZXJpb2RpY2FsPjxwYWdlcz40NzEtNDc5PC9wYWdlcz48dm9sdW1lPjExPC92b2x1 bWU+PG51bWJlcj4zPC9udW1iZXI+PGRhdGVzPjx5ZWFyPjE5NjQ8L3llYXI+PHB1Yi1kYXRlcz48 ZGF0ZT4xOTY0LzAzLzAxLzwvZGF0ZT48L3B1Yi1kYXRlcz48L2RhdGVzPjxpc2JuPjAwMzktOTE0 MDwvaXNibj48dXJscz48cmVsYXRlZC11cmxzPjx1cmw+aHR0cDovL3d3dy5zY2llbmNlZGlyZWN0 LmNvbS9zY2llbmNlL2FydGljbGUvcGlpLzAwMzk5MTQwNjQ4MDA1NjQ8L3VybD48L3JlbGF0ZWQt dXJscz48L3VybHM+PGVsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPmh0dHBzOi8vZG9pLm9yZy8xMC4x MDE2LzAwMzktOTE0MCg2NCk4MDA1Ni00PC9lbGVjdHJvbmljLXJlc291cmNlLW51bT48L3JlY29y ZD48L0NpdGU+PC9FbmROb3RlPn== ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5CYXJrPC9BdXRob3I+PFllYXI+MTk2NDwvWWVhcj48UmVj TnVtPjgxPC9SZWNOdW0+PERpc3BsYXlUZXh0PihCYXJrIGFuZCBIaWdzb24sIDE5NjRhLCBCYXJr IGFuZCBIaWdzb24sIDE5NjRiKTwvRGlzcGxheVRleHQ+PHJlY29yZD48cmVjLW51bWJlcj44MTwv cmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9InBkdjVhYTJhaDJ4 NXRuZTV6ZWNwYXd6Z3oyeHByc3p3d3YyZCIgdGltZXN0YW1wPSIxNTI0OTI1NDU2Ij44MTwva2V5 PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3VybmFsIEFydGljbGUiPjE3PC9yZWYt dHlwZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+QmFyaywgTC4gUy48L2F1dGhvcj48 YXV0aG9yPkhpZ3NvbiwgSC4gRy48L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRp dGxlcz48dGl0bGU+SW52ZXN0aWdhdGlvbiBvZiByZWFnZW50cyBmb3IgdGhlIGNvbG9yaW1ldHJp YyBkZXRlcm1pbmF0aW9uIG9mIHNtYWxsIGFtb3VudHMgb2YgY3lhbmlkZS1JSTExUGFydCBJOiBz ZWUgcmVmZXJlbmNlIDQuOiBBIHByb3Bvc2VkIG1ldGhvZCBmb3IgdHJhY2UgY3lhbmlkZSBpbiB3 YXRlcnM8L3RpdGxlPjxzZWNvbmRhcnktdGl0bGU+VGFsYW50YTwvc2Vjb25kYXJ5LXRpdGxlPjwv dGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPlRhbGFudGE8L2Z1bGwtdGl0bGU+PC9wZXJp b2RpY2FsPjxwYWdlcz42MjEtNjMxPC9wYWdlcz48dm9sdW1lPjExPC92b2x1bWU+PG51bWJlcj4z PC9udW1iZXI+PGRhdGVzPjx5ZWFyPjE5NjQ8L3llYXI+PHB1Yi1kYXRlcz48ZGF0ZT4xOTY0LzAz LzAxLzwvZGF0ZT48L3B1Yi1kYXRlcz48L2RhdGVzPjxpc2JuPjAwMzktOTE0MDwvaXNibj48dXJs cz48cmVsYXRlZC11cmxzPjx1cmw+aHR0cDovL3d3dy5zY2llbmNlZGlyZWN0LmNvbS9zY2llbmNl L2FydGljbGUvcGlpLzAwMzk5MTQwNjQ4MDA3MzQ8L3VybD48L3JlbGF0ZWQtdXJscz48L3VybHM+ PGVsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPmh0dHBzOi8vZG9pLm9yZy8xMC4xMDE2LzAwMzktOTE0 MCg2NCk4MDA3My00PC9lbGVjdHJvbmljLXJlc291cmNlLW51bT48L3JlY29yZD48L0NpdGU+PENp dGU+PEF1dGhvcj5CYXJrPC9BdXRob3I+PFllYXI+MTk2NDwvWWVhcj48UmVjTnVtPjM4PC9SZWNO dW0+PHJlY29yZD48cmVjLW51bWJlcj4zODwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkg YXBwPSJFTiIgZGItaWQ9InBkdjVhYTJhaDJ4NXRuZTV6ZWNwYXd6Z3oyeHByc3p3d3YyZCIgdGlt ZXN0YW1wPSIxNTIzNjAxNDkxIj4zODwva2V5PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1l PSJKb3VybmFsIEFydGljbGUiPjE3PC9yZWYtdHlwZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxh dXRob3I+QmFyaywgTC4gUy48L2F1dGhvcj48YXV0aG9yPkhpZ3NvbiwgSC4gRy48L2F1dGhvcj48 L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRpdGxlcz48dGl0bGU+SW52ZXN0aWdhdGlvbiBvZiBy ZWFnZW50cyBmb3IgdGhlIGNvbG9yaW1ldHJpYyBkZXRlcm1pbmF0aW9uIG9mIHNtYWxsIGFtb3Vu dHMgb2YgY3lhbmlkZeKAlEk8L3RpdGxlPjxzZWNvbmRhcnktdGl0bGU+VGFsYW50YTwvc2Vjb25k YXJ5LXRpdGxlPjwvdGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPlRhbGFudGE8L2Z1bGwt dGl0bGU+PC9wZXJpb2RpY2FsPjxwYWdlcz40NzEtNDc5PC9wYWdlcz48dm9sdW1lPjExPC92b2x1 bWU+PG51bWJlcj4zPC9udW1iZXI+PGRhdGVzPjx5ZWFyPjE5NjQ8L3llYXI+PHB1Yi1kYXRlcz48 ZGF0ZT4xOTY0LzAzLzAxLzwvZGF0ZT48L3B1Yi1kYXRlcz48L2RhdGVzPjxpc2JuPjAwMzktOTE0 MDwvaXNibj48dXJscz48cmVsYXRlZC11cmxzPjx1cmw+aHR0cDovL3d3dy5zY2llbmNlZGlyZWN0 LmNvbS9zY2llbmNlL2FydGljbGUvcGlpLzAwMzk5MTQwNjQ4MDA1NjQ8L3VybD48L3JlbGF0ZWQt dXJscz48L3VybHM+PGVsZWN0cm9uaWMtcmVzb3VyY2UtbnVtPmh0dHBzOi8vZG9pLm9yZy8xMC4x MDE2LzAwMzktOTE0MCg2NCk4MDA1Ni00PC9lbGVjdHJvbmljLXJlc291cmNlLW51bT48L3JlY29y ZD48L0NpdGU+PC9FbmROb3RlPn== ADDIN EN.CITE.DATA (Bark and Higson, 1964a, Bark and Higson, 1964b) have shown that other heterocyclic amines are unsuitable as a replacement for pyridine, while p-phenylenediamine is the amine of choice for use in the color reagent. However, the greater disadvantages in the use of amines in the color reagent, has been their dangerous physiological properties.

The carcinogenic properties of benzidine are well known. Dianisidine and the tolidines are suspected of being carcinogenic while p-phenylenediamine is an allergen. The greatest drawback of the Epstein procedure is the relatively unstable color reagent which has to be prepared fresh immediately before use. The use of barbituric acid has numerous disadvantages associated with the color reagent, such as.

the use of a large sample size, the instability of the reagent, and also of the color formed ADDIN EN.CITE ;EndNote;;Cite;;Author;Sharma;/Author;;Year;1985;/Year;;RecNum;46;/RecNum;;DisplayText;(Sharma and Thibert, 1985);/DisplayText;;record;;rec-number;46;/rec-number;;foreign-keys;;key app=”EN” db-id=”pdv5aa2ah2x5tne5zecpawzgz2xprszwwv2d” timestamp=”1523603743″;46;/key;;/foreign-keys;;ref-type name=”Journal Article”;17;/ref-type;;contributors;;authors;;author;Sharma, A;/author;;author;Thibert, RJ;/author;;/authors;;/contributors;;titles;;title;The effect of barbituric acid concentration in the spectrophotometric determination of cyanide and thiocyanate by the pyridine-barbituric acid method;/title;;secondary-title;Microchimica Acta;/secondary-title;;/titles;;periodical;;full-title;Microchimica Acta;/full-title;;/periodical;;pages;357-363;/pages;;volume;85;/volume;;number;5-6;/number;;dates;;year;1985;/year;;/dates;;isbn;0026-3672;/isbn;;urls;;/urls;;/record;;/Cite;;/EndNote;(Sharma and Thibert, 1985). Most of these method spectrophotometric based on k?nig reaction PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5QZXR0aWdyZXc8L0F1dGhvcj48WWVhcj4xOTcyPC9ZZWFy PjxSZWNOdW0+ODY8L1JlY051bT48RGlzcGxheVRleHQ+KFBldHRpZ3JldyBhbmQgRmVsbCwgMTk3 MiwgTHVuZHF1aXN0IGV0IGFsLiwgMTk3OSwgVHN1Z2UgZXQgYWwuLCAyMDAwLCBOYWdhc2hpbWEs IDE5ODQsIE5hZ2FzaGltYSwgMTk4Myk8L0Rpc3BsYXlUZXh0PjxyZWNvcmQ+PHJlYy1udW1iZXI+ ODY8L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFwcD0iRU4iIGRiLWlkPSJwZHY1YWEy YWgyeDV0bmU1emVjcGF3emd6MnhwcnN6d3d2MmQiIHRpbWVzdGFtcD0iMTUyNTA3NzM0NSI+ODY8 L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwv cmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPlBldHRpZ3JldywgQVI8L2F1 dGhvcj48YXV0aG9yPkZlbGwsIEdTPC9hdXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjx0 aXRsZXM+PHRpdGxlPlNpbXBsaWZpZWQgY29sb3JpbWV0cmljIGRldGVybWluYXRpb24gb2YgdGhp b2N5YW5hdGUgaW4gYmlvbG9naWNhbCBmbHVpZHMsIGFuZCBpdHMgYXBwbGljYXRpb24gdG8gaW52 ZXN0aWdhdGlvbiBvZiB0aGUgdG94aWMgYW1ibHlvcGlhczwvdGl0bGU+PHNlY29uZGFyeS10aXRs ZT5DbGluaWNhbCBDaGVtaXN0cnk8L3NlY29uZGFyeS10aXRsZT48L3RpdGxlcz48cGVyaW9kaWNh bD48ZnVsbC10aXRsZT5DbGluaWNhbCBjaGVtaXN0cnk8L2Z1bGwtdGl0bGU+PC9wZXJpb2RpY2Fs PjxwYWdlcz45OTYtMTAwMDwvcGFnZXM+PHZvbHVtZT4xODwvdm9sdW1lPjxudW1iZXI+OTwvbnVt YmVyPjxkYXRlcz48eWVhcj4xOTcyPC95ZWFyPjwvZGF0ZXM+PGlzYm4+MDAwOS05MTQ3PC9pc2Ju Pjx1cmxzPjwvdXJscz48L3JlY29yZD48L0NpdGU+PENpdGU+PEF1dGhvcj5MdW5kcXVpc3Q8L0F1 dGhvcj48WWVhcj4xOTc5PC9ZZWFyPjxSZWNOdW0+MTwvUmVjTnVtPjxyZWNvcmQ+PHJlYy1udW1i ZXI+MTwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9InBkdjVh YTJhaDJ4NXRuZTV6ZWNwYXd6Z3oyeHByc3p3d3YyZCIgdGltZXN0YW1wPSIxNTIzMzA1NTQ0Ij4x PC9rZXk+PC9mb3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8 L3JlZi10eXBlPjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5MdW5kcXVpc3QsIFBlcjwv YXV0aG9yPjxhdXRob3I+TcOlcnRlbnNzb24sIEo8L2F1dGhvcj48YXV0aG9yPlPDtnJibywgQjwv YXV0aG9yPjxhdXRob3I+T2htYW4sIFN0ZW48L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRv cnM+PHRpdGxlcz48dGl0bGU+TWV0aG9kIGZvciBkZXRlcm1pbmluZyB0aGlvY3lhbmF0ZSBpbiBz ZXJ1bSBhbmQgdXJpbmU8L3RpdGxlPjxzZWNvbmRhcnktdGl0bGU+Q2xpbmljYWwgY2hlbWlzdHJ5 PC9zZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+Q2xpbmlj YWwgY2hlbWlzdHJ5PC9mdWxsLXRpdGxlPjwvcGVyaW9kaWNhbD48cGFnZXM+Njc4LTY4MTwvcGFn ZXM+PHZvbHVtZT4yNTwvdm9sdW1lPjxudW1iZXI+NTwvbnVtYmVyPjxkYXRlcz48eWVhcj4xOTc5 PC95ZWFyPjwvZGF0ZXM+PGlzYm4+MDAwOS05MTQ3PC9pc2JuPjx1cmxzPjwvdXJscz48L3JlY29y ZD48L0NpdGU+PENpdGU+PEF1dGhvcj5Uc3VnZTwvQXV0aG9yPjxZZWFyPjIwMDA8L1llYXI+PFJl Y051bT44PC9SZWNOdW0+PHJlY29yZD48cmVjLW51bWJlcj44PC9yZWMtbnVtYmVyPjxmb3JlaWdu LWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0icGR2NWFhMmFoMng1dG5lNXplY3Bhd3pnejJ4cHJz end3djJkIiB0aW1lc3RhbXA9IjE1MjM0MjkxOTEiPjg8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVm LXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48 YXV0aG9ycz48YXV0aG9yPlRzdWdlLCBLb3VpY2hpcm88L2F1dGhvcj48YXV0aG9yPkthdGFva2Es IE1pZWtvPC9hdXRob3I+PGF1dGhvcj5TZXRvLCBZYXN1bzwvYXV0aG9yPjwvYXV0aG9ycz48L2Nv bnRyaWJ1dG9ycz48dGl0bGVzPjx0aXRsZT5DeWFuaWRlIGFuZCB0aGlvY3lhbmF0ZSBsZXZlbHMg aW4gYmxvb2QgYW5kIHNhbGl2YSBvZiBoZWFsdGh5IGFkdWx0IHZvbHVudGVlcnM8L3RpdGxlPjxz ZWNvbmRhcnktdGl0bGU+Sm91cm5hbCBvZiBIZWFsdGggU2NpZW5jZTwvc2Vjb25kYXJ5LXRpdGxl PjwvdGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPkpvdXJuYWwgb2YgSGVhbHRoIFNjaWVu Y2U8L2Z1bGwtdGl0bGU+PC9wZXJpb2RpY2FsPjxwYWdlcz4zNDMtMzUwPC9wYWdlcz48dm9sdW1l PjQ2PC92b2x1bWU+PG51bWJlcj41PC9udW1iZXI+PGRhdGVzPjx5ZWFyPjIwMDA8L3llYXI+PC9k YXRlcz48aXNibj4xMzQ0LTk3MDI8L2lzYm4+PHVybHM+PC91cmxzPjwvcmVjb3JkPjwvQ2l0ZT48 Q2l0ZT48QXV0aG9yPk5hZ2FzaGltYTwvQXV0aG9yPjxZZWFyPjE5ODQ8L1llYXI+PFJlY051bT4x OTwvUmVjTnVtPjxyZWNvcmQ+PHJlYy1udW1iZXI+MTk8L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5 cz48a2V5IGFwcD0iRU4iIGRiLWlkPSJwZHY1YWEyYWgyeDV0bmU1emVjcGF3emd6MnhwcnN6d3d2 MmQiIHRpbWVzdGFtcD0iMTUyMzQzMzgyNyI+MTk8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5 cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0 aG9ycz48YXV0aG9yPk5hZ2FzaGltYSwgU2hpZ2VydTwvYXV0aG9yPjwvYXV0aG9ycz48L2NvbnRy aWJ1dG9ycz48dGl0bGVzPjx0aXRsZT5TaW11bHRhbmVvdXMgcmVhY3Rpb24gcmF0ZSBzcGVjdHJv cGhvdG9tZXRyaWMgZGV0ZXJtaW5hdGlvbiBvZiBjeWFuaWRlIGFuZCB0aGlvY3lhbmF0ZSBieSB1 c2Ugb2YgdGhlIHB5cmlkaW5lLWJhcmJpdHVyaWMgYWNpZCBtZXRob2Q8L3RpdGxlPjxzZWNvbmRh cnktdGl0bGU+QW5hbHl0aWNhbCBDaGVtaXN0cnk8L3NlY29uZGFyeS10aXRsZT48L3RpdGxlcz48 cGVyaW9kaWNhbD48ZnVsbC10aXRsZT5BbmFseXRpY2FsIENoZW1pc3RyeTwvZnVsbC10aXRsZT48 L3BlcmlvZGljYWw+PHBhZ2VzPjE5NDQtMTk0NzwvcGFnZXM+PHZvbHVtZT41Njwvdm9sdW1lPjxu dW1iZXI+MTE8L251bWJlcj48ZGF0ZXM+PHllYXI+MTk4NDwveWVhcj48L2RhdGVzPjxpc2JuPjAw MDMtMjcwMDwvaXNibj48dXJscz48L3VybHM+PC9yZWNvcmQ+PC9DaXRlPjxDaXRlPjxBdXRob3I+ TmFnYXNoaW1hPC9BdXRob3I+PFllYXI+MTk4MzwvWWVhcj48UmVjTnVtPjg0PC9SZWNOdW0+PHJl Y29yZD48cmVjLW51bWJlcj44NDwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJF TiIgZGItaWQ9InBkdjVhYTJhaDJ4NXRuZTV6ZWNwYXd6Z3oyeHByc3p3d3YyZCIgdGltZXN0YW1w PSIxNTI0OTI3NTI1Ij44NDwva2V5PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3Vy bmFsIEFydGljbGUiPjE3PC9yZWYtdHlwZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+ TmFnYXNoaW1hLCBTaGlnZXJ1PC9hdXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjx0aXRs ZXM+PHRpdGxlPlByZXBhcmF0aW9uIG9mIHB5cmlkaW5lIHB5cmF6b2xvbmUgcmVhZ2VudCBhbmQg cHlyaWRpbmUtYmFyYml0dXJpYyBhY2lkIHJlYWdlbnQgZm9yIHNwZWN0cm9waG90b21ldHJpYyBk ZXRlcm1pbmF0aW9uIG9mIGN5YW5pZGU8L3RpdGxlPjxzZWNvbmRhcnktdGl0bGU+V2F0ZXIgUmVz ZWFyY2g8L3NlY29uZGFyeS10aXRsZT48L3RpdGxlcz48cGVyaW9kaWNhbD48ZnVsbC10aXRsZT5X YXRlciBSZXNlYXJjaDwvZnVsbC10aXRsZT48L3BlcmlvZGljYWw+PHBhZ2VzPjgzMy04MzQ8L3Bh Z2VzPjx2b2x1bWU+MTc8L3ZvbHVtZT48bnVtYmVyPjc8L251bWJlcj48a2V5d29yZHM+PGtleXdv cmQ+Q3lhbmlkZSBkZXRlcm1pbmF0aW9uPC9rZXl3b3JkPjxrZXl3b3JkPndhdGVyIGFuYWx5c2lz PC9rZXl3b3JkPjxrZXl3b3JkPnNwZWN0cm9waG90b21ldHJ5PC9rZXl3b3JkPjxrZXl3b3JkPnB5 cmlkaW5lLXB5cmF6b2xvbmUgcmVhZ2VudDwva2V5d29yZD48a2V5d29yZD5weXJpZGluZS1iYXJi aXR1cmljIGFjaWQgcmVhZ2VudDwva2V5d29yZD48L2tleXdvcmRzPjxkYXRlcz48eWVhcj4xOTgz PC95ZWFyPjxwdWItZGF0ZXM+PGRhdGU+MTk4My8wMS8wMS88L2RhdGU+PC9wdWItZGF0ZXM+PC9k YXRlcz48aXNibj4wMDQzLTEzNTQ8L2lzYm4+PHVybHM+PHJlbGF0ZWQtdXJscz48dXJsPmh0dHA6 Ly93d3cuc2NpZW5jZWRpcmVjdC5jb20vc2NpZW5jZS9hcnRpY2xlL3BpaS8wMDQzMTM1NDgzOTAw ODA1PC91cmw+PC9yZWxhdGVkLXVybHM+PC91cmxzPjxlbGVjdHJvbmljLXJlc291cmNlLW51bT5o dHRwczovL2RvaS5vcmcvMTAuMTAxNi8wMDQzLTEzNTQoODMpOTAwODAtNTwvZWxlY3Ryb25pYy1y ZXNvdXJjZS1udW0+PC9yZWNvcmQ+PC9DaXRlPjwvRW5kTm90ZT4A ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5QZXR0aWdyZXc8L0F1dGhvcj48WWVhcj4xOTcyPC9ZZWFy PjxSZWNOdW0+ODY8L1JlY051bT48RGlzcGxheVRleHQ+KFBldHRpZ3JldyBhbmQgRmVsbCwgMTk3 MiwgTHVuZHF1aXN0IGV0IGFsLiwgMTk3OSwgVHN1Z2UgZXQgYWwuLCAyMDAwLCBOYWdhc2hpbWEs IDE5ODQsIE5hZ2FzaGltYSwgMTk4Myk8L0Rpc3BsYXlUZXh0PjxyZWNvcmQ+PHJlYy1udW1iZXI+ ODY8L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFwcD0iRU4iIGRiLWlkPSJwZHY1YWEy YWgyeDV0bmU1emVjcGF3emd6MnhwcnN6d3d2MmQiIHRpbWVzdGFtcD0iMTUyNTA3NzM0NSI+ODY8 L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwv cmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPlBldHRpZ3JldywgQVI8L2F1 dGhvcj48YXV0aG9yPkZlbGwsIEdTPC9hdXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjx0 aXRsZXM+PHRpdGxlPlNpbXBsaWZpZWQgY29sb3JpbWV0cmljIGRldGVybWluYXRpb24gb2YgdGhp b2N5YW5hdGUgaW4gYmlvbG9naWNhbCBmbHVpZHMsIGFuZCBpdHMgYXBwbGljYXRpb24gdG8gaW52 ZXN0aWdhdGlvbiBvZiB0aGUgdG94aWMgYW1ibHlvcGlhczwvdGl0bGU+PHNlY29uZGFyeS10aXRs ZT5DbGluaWNhbCBDaGVtaXN0cnk8L3NlY29uZGFyeS10aXRsZT48L3RpdGxlcz48cGVyaW9kaWNh bD48ZnVsbC10aXRsZT5DbGluaWNhbCBjaGVtaXN0cnk8L2Z1bGwtdGl0bGU+PC9wZXJpb2RpY2Fs PjxwYWdlcz45OTYtMTAwMDwvcGFnZXM+PHZvbHVtZT4xODwvdm9sdW1lPjxudW1iZXI+OTwvbnVt YmVyPjxkYXRlcz48eWVhcj4xOTcyPC95ZWFyPjwvZGF0ZXM+PGlzYm4+MDAwOS05MTQ3PC9pc2Ju Pjx1cmxzPjwvdXJscz48L3JlY29yZD48L0NpdGU+PENpdGU+PEF1dGhvcj5MdW5kcXVpc3Q8L0F1 dGhvcj48WWVhcj4xOTc5PC9ZZWFyPjxSZWNOdW0+MTwvUmVjTnVtPjxyZWNvcmQ+PHJlYy1udW1i ZXI+MTwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9InBkdjVh YTJhaDJ4NXRuZTV6ZWNwYXd6Z3oyeHByc3p3d3YyZCIgdGltZXN0YW1wPSIxNTIzMzA1NTQ0Ij4x PC9rZXk+PC9mb3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8 L3JlZi10eXBlPjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5MdW5kcXVpc3QsIFBlcjwv YXV0aG9yPjxhdXRob3I+TcOlcnRlbnNzb24sIEo8L2F1dGhvcj48YXV0aG9yPlPDtnJibywgQjwv YXV0aG9yPjxhdXRob3I+T2htYW4sIFN0ZW48L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRv cnM+PHRpdGxlcz48dGl0bGU+TWV0aG9kIGZvciBkZXRlcm1pbmluZyB0aGlvY3lhbmF0ZSBpbiBz ZXJ1bSBhbmQgdXJpbmU8L3RpdGxlPjxzZWNvbmRhcnktdGl0bGU+Q2xpbmljYWwgY2hlbWlzdHJ5 PC9zZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+Q2xpbmlj YWwgY2hlbWlzdHJ5PC9mdWxsLXRpdGxlPjwvcGVyaW9kaWNhbD48cGFnZXM+Njc4LTY4MTwvcGFn ZXM+PHZvbHVtZT4yNTwvdm9sdW1lPjxudW1iZXI+NTwvbnVtYmVyPjxkYXRlcz48eWVhcj4xOTc5 PC95ZWFyPjwvZGF0ZXM+PGlzYm4+MDAwOS05MTQ3PC9pc2JuPjx1cmxzPjwvdXJscz48L3JlY29y ZD48L0NpdGU+PENpdGU+PEF1dGhvcj5Uc3VnZTwvQXV0aG9yPjxZZWFyPjIwMDA8L1llYXI+PFJl Y051bT44PC9SZWNOdW0+PHJlY29yZD48cmVjLW51bWJlcj44PC9yZWMtbnVtYmVyPjxmb3JlaWdu LWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0icGR2NWFhMmFoMng1dG5lNXplY3Bhd3pnejJ4cHJz end3djJkIiB0aW1lc3RhbXA9IjE1MjM0MjkxOTEiPjg8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVm LXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48 YXV0aG9ycz48YXV0aG9yPlRzdWdlLCBLb3VpY2hpcm88L2F1dGhvcj48YXV0aG9yPkthdGFva2Es IE1pZWtvPC9hdXRob3I+PGF1dGhvcj5TZXRvLCBZYXN1bzwvYXV0aG9yPjwvYXV0aG9ycz48L2Nv bnRyaWJ1dG9ycz48dGl0bGVzPjx0aXRsZT5DeWFuaWRlIGFuZCB0aGlvY3lhbmF0ZSBsZXZlbHMg aW4gYmxvb2QgYW5kIHNhbGl2YSBvZiBoZWFsdGh5IGFkdWx0IHZvbHVudGVlcnM8L3RpdGxlPjxz ZWNvbmRhcnktdGl0bGU+Sm91cm5hbCBvZiBIZWFsdGggU2NpZW5jZTwvc2Vjb25kYXJ5LXRpdGxl PjwvdGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPkpvdXJuYWwgb2YgSGVhbHRoIFNjaWVu Y2U8L2Z1bGwtdGl0bGU+PC9wZXJpb2RpY2FsPjxwYWdlcz4zNDMtMzUwPC9wYWdlcz48dm9sdW1l PjQ2PC92b2x1bWU+PG51bWJlcj41PC9udW1iZXI+PGRhdGVzPjx5ZWFyPjIwMDA8L3llYXI+PC9k YXRlcz48aXNibj4xMzQ0LTk3MDI8L2lzYm4+PHVybHM+PC91cmxzPjwvcmVjb3JkPjwvQ2l0ZT48 Q2l0ZT48QXV0aG9yPk5hZ2FzaGltYTwvQXV0aG9yPjxZZWFyPjE5ODQ8L1llYXI+PFJlY051bT4x OTwvUmVjTnVtPjxyZWNvcmQ+PHJlYy1udW1iZXI+MTk8L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5 cz48a2V5IGFwcD0iRU4iIGRiLWlkPSJwZHY1YWEyYWgyeDV0bmU1emVjcGF3emd6MnhwcnN6d3d2 MmQiIHRpbWVzdGFtcD0iMTUyMzQzMzgyNyI+MTk8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5 cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0 aG9ycz48YXV0aG9yPk5hZ2FzaGltYSwgU2hpZ2VydTwvYXV0aG9yPjwvYXV0aG9ycz48L2NvbnRy aWJ1dG9ycz48dGl0bGVzPjx0aXRsZT5TaW11bHRhbmVvdXMgcmVhY3Rpb24gcmF0ZSBzcGVjdHJv cGhvdG9tZXRyaWMgZGV0ZXJtaW5hdGlvbiBvZiBjeWFuaWRlIGFuZCB0aGlvY3lhbmF0ZSBieSB1 c2Ugb2YgdGhlIHB5cmlkaW5lLWJhcmJpdHVyaWMgYWNpZCBtZXRob2Q8L3RpdGxlPjxzZWNvbmRh cnktdGl0bGU+QW5hbHl0aWNhbCBDaGVtaXN0cnk8L3NlY29uZGFyeS10aXRsZT48L3RpdGxlcz48 cGVyaW9kaWNhbD48ZnVsbC10aXRsZT5BbmFseXRpY2FsIENoZW1pc3RyeTwvZnVsbC10aXRsZT48 L3BlcmlvZGljYWw+PHBhZ2VzPjE5NDQtMTk0NzwvcGFnZXM+PHZvbHVtZT41Njwvdm9sdW1lPjxu dW1iZXI+MTE8L251bWJlcj48ZGF0ZXM+PHllYXI+MTk4NDwveWVhcj48L2RhdGVzPjxpc2JuPjAw MDMtMjcwMDwvaXNibj48dXJscz48L3VybHM+PC9yZWNvcmQ+PC9DaXRlPjxDaXRlPjxBdXRob3I+ TmFnYXNoaW1hPC9BdXRob3I+PFllYXI+MTk4MzwvWWVhcj48UmVjTnVtPjg0PC9SZWNOdW0+PHJl Y29yZD48cmVjLW51bWJlcj44NDwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJF TiIgZGItaWQ9InBkdjVhYTJhaDJ4NXRuZTV6ZWNwYXd6Z3oyeHByc3p3d3YyZCIgdGltZXN0YW1w PSIxNTI0OTI3NTI1Ij44NDwva2V5PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3Vy bmFsIEFydGljbGUiPjE3PC9yZWYtdHlwZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+ TmFnYXNoaW1hLCBTaGlnZXJ1PC9hdXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjx0aXRs ZXM+PHRpdGxlPlByZXBhcmF0aW9uIG9mIHB5cmlkaW5lIHB5cmF6b2xvbmUgcmVhZ2VudCBhbmQg cHlyaWRpbmUtYmFyYml0dXJpYyBhY2lkIHJlYWdlbnQgZm9yIHNwZWN0cm9waG90b21ldHJpYyBk ZXRlcm1pbmF0aW9uIG9mIGN5YW5pZGU8L3RpdGxlPjxzZWNvbmRhcnktdGl0bGU+V2F0ZXIgUmVz ZWFyY2g8L3NlY29uZGFyeS10aXRsZT48L3RpdGxlcz48cGVyaW9kaWNhbD48ZnVsbC10aXRsZT5X YXRlciBSZXNlYXJjaDwvZnVsbC10aXRsZT48L3BlcmlvZGljYWw+PHBhZ2VzPjgzMy04MzQ8L3Bh Z2VzPjx2b2x1bWU+MTc8L3ZvbHVtZT48bnVtYmVyPjc8L251bWJlcj48a2V5d29yZHM+PGtleXdv cmQ+Q3lhbmlkZSBkZXRlcm1pbmF0aW9uPC9rZXl3b3JkPjxrZXl3b3JkPndhdGVyIGFuYWx5c2lz PC9rZXl3b3JkPjxrZXl3b3JkPnNwZWN0cm9waG90b21ldHJ5PC9rZXl3b3JkPjxrZXl3b3JkPnB5 cmlkaW5lLXB5cmF6b2xvbmUgcmVhZ2VudDwva2V5d29yZD48a2V5d29yZD5weXJpZGluZS1iYXJi aXR1cmljIGFjaWQgcmVhZ2VudDwva2V5d29yZD48L2tleXdvcmRzPjxkYXRlcz48eWVhcj4xOTgz PC95ZWFyPjxwdWItZGF0ZXM+PGRhdGU+MTk4My8wMS8wMS88L2RhdGU+PC9wdWItZGF0ZXM+PC9k YXRlcz48aXNibj4wMDQzLTEzNTQ8L2lzYm4+PHVybHM+PHJlbGF0ZWQtdXJscz48dXJsPmh0dHA6 Ly93d3cuc2NpZW5jZWRpcmVjdC5jb20vc2NpZW5jZS9hcnRpY2xlL3BpaS8wMDQzMTM1NDgzOTAw ODA1PC91cmw+PC9yZWxhdGVkLXVybHM+PC91cmxzPjxlbGVjdHJvbmljLXJlc291cmNlLW51bT5o dHRwczovL2RvaS5vcmcvMTAuMTAxNi8wMDQzLTEzNTQoODMpOTAwODAtNTwvZWxlY3Ryb25pYy1y ZXNvdXJjZS1udW0+PC9yZWNvcmQ+PC9DaXRlPjwvRW5kTm90ZT4A ADDIN EN.CITE.DATA (Pettigrew and Fell, 1972, Lundquist et al., 1979, Tsuge et al., 2000, Nagashima, 1984, Nagashima, 1983, ADDIN EN.CITE ;EndNote;;Cite;;Author;Casassas;/Author;;Year;1989;/Year;;RecNum;43;/RecNum;;DisplayText;(Casassas et al., 1989);/DisplayText;;record;;rec-number;43;/rec-number;;foreign-keys;;key app=”EN” db-id=”pdv5aa2ah2x5tne5zecpawzgz2xprszwwv2d” timestamp=”1523603341″;43;/key;;/foreign-keys;;ref-type name=”Journal Article”;17;/ref-type;;contributors;;authors;;author;Casassas, E;/author;;author;Peydro, M;/author;;author;Puignou, L;/author;;/authors;;/contributors;;titles;;title;Kinetic Spectrophotometric Determination of Trace Amounts of Pyridine With 4, 4?-Diaminostilbene-2, 2?-Disulphonic Acid;/title;;secondary-title;Analytical letters;/secondary-title;;/titles;;periodical;;full-title;Analytical letters;/full-title;;/periodical;;pages;729-740;/pages;;volume;22;/volume;;number;3;/number;;dates;;year;1989;/year;;/dates;;isbn;0003-2719;/isbn;;urls;;/urls;;/record;;/Cite;;/EndNote;Casassas et al., 1989). High-performance liquid chromatography (HPLC) with fluorescence detection using a modified K?nig reaction ADDIN EN.CITE ;EndNote;;Cite;;Author;Toida;/Author;;Year;1984;/Year;;RecNum;37;/RecNum;;DisplayText;(Toida et al., 1984);/DisplayText;;record;;rec-number;37;/rec-number;;foreign-keys;;key app=”EN” db-id=”pdv5aa2ah2x5tne5zecpawzgz2xprszwwv2d” timestamp=”1523601293″;37;/key;;/foreign-keys;;ref-type name=”Journal Article”;17;/ref-type;;contributors;;authors;;author;Toida, Toshihiko;/author;;author;Togawa, Tadayasu;/author;;author;Tanabe, Shinzo;/author;;author;Imanari, Toshio;/author;;/authors;;/contributors;;titles;;title;Determination of cyanide and thiocyanate in blood plasma and red cells by high-performance liquid chromatography with fluorometric detection;/title;;secondary-title;Journal of Chromatography B: Biomedical Sciences and Applications;/secondary-title;;/titles;;periodical;;full-title;Journal of Chromatography B: Biomedical Sciences and Applications;/full-title;;/periodical;;pages;133-141;/pages;;volume;308;/volume;;dates;;year;1984;/year;;pub-dates;;date;1984/06/08/;/date;;/pub-dates;;/dates;;isbn;0378-4347;/isbn;;urls;;related-urls;;url;http://www.sciencedirect.com/science/article/pii/0378434784802030;/url;;/related-urls;;/urls;;electronic-resource-num;https://doi.org/10.1016/0378-4347(84)80203-0;/electronic-resource-num;;/record;;/Cite;;/EndNote;(Toida et al., 1984 , ADDIN EN.CITE ;EndNote;;Cite;;Author;SHIMOKOBE;/Author;;Year;1988;/Year;;RecNum;48;/RecNum;;DisplayText;(SHIMOKOBE et al., 1988);/DisplayText;;record;;rec-number;48;/rec-number;;foreign-keys;;key app=”EN” db-id=”pdv5aa2ah2x5tne5zecpawzgz2xprszwwv2d” timestamp=”1523604310″;48;/key;;/foreign-keys;;ref-type name=”Journal Article”;17;/ref-type;;contributors;;authors;;author;SHIMOKOBE, Takashi;/author;;author;WATANABE, Toshinori;/author;;author;TOGAWA, Tadayasu;/author;;author;IMANARI, Toshio;/author;;/authors;;/contributors;;titles;;title;Determination of thiocyano group in biological materials;/title;;secondary-title;Analytical sciences;/secondary-title;;/titles;;periodical;;full-title;Analytical sciences;/full-title;;/periodical;;pages;97-100;/pages;;volume;4;/volume;;number;1;/number;;dates;;year;1988;/year;;/dates;;isbn;0910-6340;/isbn;;urls;;/urls;;/record;;/Cite;;/EndNote;SHIMOKOBE et al., 1988). High-performance liquid chromatography) HPLC) and colorimetric detection by the k?nig reaction ADDIN EN.CITE ;EndNote;;Cite;;Author;IMANARI;/Author;;Year;1982;/Year;;RecNum;88;/RecNum;;DisplayText;(IMANARI et al., 1982);/DisplayText;;record;;rec-number;88;/rec-number;;foreign-keys;;key app=”EN” db-id=”pdv5aa2ah2x5tne5zecpawzgz2xprszwwv2d” timestamp=”1525079591″;88;/key;;/foreign-keys;;ref-type name=”Journal Article”;17;/ref-type;;contributors;;authors;;author;IMANARI, TOSHIO;/author;;author;TANABE, SHINZO;/author;;author;TOIDA, TOSHIHIKO;/author;;/authors;;/contributors;;titles;;title;Simultaneous determination of cyanide and thiocyanate by high performance liquid chromatography;/title;;secondary-title;Chemical and Pharmaceutical Bulletin;/secondary-title;;/titles;;periodical;;full-title;Chemical and Pharmaceutical Bulletin;/full-title;;/periodical;;pages;3800-3802;/pages;;volume;30;/volume;;number;10;/number;;dates;;year;1982;/year;;/dates;;isbn;0009-2363;/isbn;;urls;;/urls;;/record;;/Cite;;/EndNote;(IMANARI et al., 1982) . Fluormetric determination based on K?nig reaction ADDIN EN.CITE ;EndNote;;Cite;;Author;TOIDA;/Author;;Year;1981;/Year;;RecNum;3;/RecNum;;DisplayText;(TOIDA et al., 1981);/DisplayText;;record;;rec-number;3;/rec-number;;foreign-keys;;key app=”EN” db-id=”pdv5aa2ah2x5tne5zecpawzgz2xprszwwv2d” timestamp=”1523424672″;3;/key;;/foreign-keys;;ref-type name=”Journal Article”;17;/ref-type;;contributors;;authors;;author;TOIDA, TOSHIHIKO;/author;;author;TANABE, SHINZO;/author;;author;IMANARI, TOSHIO;/author;;/authors;;/contributors;;titles;;title;Fluorometric Determination of Cyanide and Thiocyanate by Konig Reaction;/title;;secondary-title;Chemical and Pharmaceutical Bulletin;/secondary-title;;/titles;;periodical;;full-title;Chemical and Pharmaceutical Bulletin;/full-title;;/periodical;;pages;3763-3764;/pages;;volume;29;/volume;;number;12;/number;;dates;;year;1981;/year;;/dates;;isbn;0009-2363;/isbn;;urls;;/urls;;/record;;/Cite;;/EndNote;(TOIDA et al., 1981, ADDIN EN.CITE ;EndNote;;Cite;;Author;Tanabe;/Author;;Year;1988;/Year;;RecNum;10;/RecNum;;DisplayText;(Tanabe et al., 1988);/DisplayText;;record;;rec-number;10;/rec-number;;foreign-keys;;key app=”EN” db-id=”pdv5aa2ah2x5tne5zecpawzgz2xprszwwv2d” timestamp=”1523429676″;10;/key;;/foreign-keys;;ref-type name=”Journal Article”;17;/ref-type;;contributors;;authors;;author;Tanabe, Shinzo;/author;;author;Kitahara, Michie;/author;;author;Nawata, Masashi;/author;;author;Kawanabe, Kouji;/author;;/authors;;/contributors;;titles;;title;Determination of oxidizable inorganic anions by high-performance liquid chromatography with fluorescence detection and application to the determination of salivary nitrite and thiocyanate and serum thiocyanate;/title;;secondary-title;Journal of Chromatography B: Biomedical Sciences and Applications;/secondary-title;;/titles;;periodical;;full-title;Journal of Chromatography B: Biomedical Sciences and Applications;/full-title;;/periodical;;pages;29-37;/pages;;volume;424;/volume;;dates;;year;1988;/year;;pub-dates;;date;1988/01/01/;/date;;/pub-dates;;/dates;;isbn;0378-4347;/isbn;;urls;;related-urls;;url;http://www.sciencedirect.com/science/article/pii/S0378434700810737;/url;;/related-urls;;/urls;;electronic-resource-num;https://doi.org/10.1016/S0378-4347(00)81073-7;/electronic-resource-num;;/record;;/Cite;;/EndNote;Tanabe et al., 1988).

Flow injection ADDIN EN.CITE ;EndNote;;Cite;;Author;Vesey;/Author;;Year;1985;/Year;;RecNum;22;/RecNum;;DisplayText;(Vesey and Kirk, 1985);/DisplayText;;record;;rec-number;22;/rec-number;;foreign-keys;;key app=”EN” db-id=”pdv5aa2ah2x5tne5zecpawzgz2xprszwwv2d” timestamp=”1523434342″;22;/key;;/foreign-keys;;ref-type name=”Journal Article”;17;/ref-type;;contributors;;authors;;author;Vesey, Cyril J;/author;;author;Kirk, CJ;/author;;/authors;;/contributors;;titles;;title;Two automated methods for measuring plasma thiocyanate compared;/title;;secondary-title;Clinical chemistry;/secondary-title;;/titles;;periodical;;full-title;Clinical chemistry;/full-title;;/periodical;;pages;270-274;/pages;;volume;31;/volume;;number;2;/number;;dates;;year;1985;/year;;/dates;;isbn;0009-9147;/isbn;;urls;;/urls;;/record;;/Cite;;/EndNote;(Vesey and Kirk, 1985) methods based on the K?nig reaction, on use of iron-chloramine- T PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5HaXJhdWRpPC9BdXRob3I+PFllYXI+MTk4MTwvWWVhcj48 UmVjTnVtPjg3PC9SZWNOdW0+PERpc3BsYXlUZXh0PihHaXJhdWRpIGFuZCBHcmlsbG8sIDE5ODEs IFRhbmFrYSBldCBhbC4sIDE5ODgpPC9EaXNwbGF5VGV4dD48cmVjb3JkPjxyZWMtbnVtYmVyPjg3 PC9yZWMtbnVtYmVyPjxmb3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0icGR2NWFhMmFo Mng1dG5lNXplY3Bhd3pnejJ4cHJzend3djJkIiB0aW1lc3RhbXA9IjE1MjUwNzg0NDMiPjg3PC9r ZXk+PC9mb3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3Jl Zi10eXBlPjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5HaXJhdWRpLCBHaWFuZnJhbmNv PC9hdXRob3I+PGF1dGhvcj5HcmlsbG8sIENhdGVyaW5hPC9hdXRob3I+PC9hdXRob3JzPjwvY29u dHJpYnV0b3JzPjx0aXRsZXM+PHRpdGxlPkRpcmVjdCBzcGVjdHJvcGhvdG9tZXRyaWMgZGV0ZXJt aW5hdGlvbiBvZiB0aGlvY3lhbmF0ZSBpbiBzZXJ1bSBhbmQgdXJpbmUgd2l0aCBhIGNvbnRpbnVv dXMtZmxvdyBhbmFseXplcjwvdGl0bGU+PHNlY29uZGFyeS10aXRsZT5BbmFseXRpY2EgQ2hpbWlj YSBBY3RhPC9zZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+ QW5hbHl0aWNhIENoaW1pY2EgQWN0YTwvZnVsbC10aXRsZT48L3BlcmlvZGljYWw+PHBhZ2VzPjE2 OS0xNzU8L3BhZ2VzPjx2b2x1bWU+MTI4PC92b2x1bWU+PGRhdGVzPjx5ZWFyPjE5ODE8L3llYXI+ PHB1Yi1kYXRlcz48ZGF0ZT4xOTgxLzA3LzAxLzwvZGF0ZT48L3B1Yi1kYXRlcz48L2RhdGVzPjxp c2JuPjAwMDMtMjY3MDwvaXNibj48dXJscz48cmVsYXRlZC11cmxzPjx1cmw+aHR0cDovL3d3dy5z Y2llbmNlZGlyZWN0LmNvbS9zY2llbmNlL2FydGljbGUvcGlpL1MwMDAzMjY3MDAxODQwOTY0PC91 cmw+PC9yZWxhdGVkLXVybHM+PC91cmxzPjxlbGVjdHJvbmljLXJlc291cmNlLW51bT5odHRwczov L2RvaS5vcmcvMTAuMTAxNi9TMDAwMy0yNjcwKDAxKTg0MDk2LTQ8L2VsZWN0cm9uaWMtcmVzb3Vy Y2UtbnVtPjwvcmVjb3JkPjwvQ2l0ZT48Q2l0ZT48QXV0aG9yPlRhbmFrYTwvQXV0aG9yPjxZZWFy PjE5ODg8L1llYXI+PFJlY051bT44OTwvUmVjTnVtPjxyZWNvcmQ+PHJlYy1udW1iZXI+ODk8L3Jl Yy1udW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFwcD0iRU4iIGRiLWlkPSJwZHY1YWEyYWgyeDV0 bmU1emVjcGF3emd6MnhwcnN6d3d2MmQiIHRpbWVzdGFtcD0iMTUyNTA5MDk3NSI+ODk8L2tleT48 L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5 cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPlRhbmFrYSwgQWtyYTwvYXV0aG9yPjxh dXRob3I+TWFzaGliYSwga2Vpamk8L2F1dGhvcj48YXV0aG9yPkRlZ3VjaGksIFRvc2hpbzwvYXV0 aG9yPjwvYXV0aG9ycz48L2NvbnRyaWJ1dG9ycz48dGl0bGVzPjx0aXRsZT5TaW11bHRhbmVvdXMg ZGV0ZXJtaW5hdGlvbm9mIGN5YW5pZGUgYW5kIHRoaW9jeWFuYXRlIGJ5IHRoZSBweXJpZGluZS9i YXJiaXR1cmljIGFjaWQgbWV0aG9kIGFmdGVyIGRpZmZ1c2lvbiB0aHJvdWdoIGEgbWljcm9wb3Jv dXMgbWVtYnJhbmU8L3RpdGxlPjxzZWNvbmRhcnktdGl0bGU+QW5hbHl0aWNhIENoaW1pY2EgQWN0 YTwvc2Vjb25kYXJ5LXRpdGxlPjwvdGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPkFuYWx5 dGljYSBDaGltaWNhIEFjdGE8L2Z1bGwtdGl0bGU+PC9wZXJpb2RpY2FsPjxwYWdlcz4yNTktMjY5 PC9wYWdlcz48dm9sdW1lPjIxNDwvdm9sdW1lPjxkYXRlcz48eWVhcj4xOTg4PC95ZWFyPjxwdWIt ZGF0ZXM+PGRhdGU+MTk4OC8wMS8wMS88L2RhdGU+PC9wdWItZGF0ZXM+PC9kYXRlcz48aXNibj4w MDAzLTI2NzA8L2lzYm4+PHVybHM+PHJlbGF0ZWQtdXJscz48dXJsPmh0dHA6Ly93d3cuc2NpZW5j ZWRpcmVjdC5jb20vc2NpZW5jZS9hcnRpY2xlL3BpaS9TMDAwMzI2NzAwMDgwNDQ3WDwvdXJsPjwv cmVsYXRlZC11cmxzPjwvdXJscz48ZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+aHR0cHM6Ly9kb2ku b3JnLzEwLjEwMTYvUzAwMDMtMjY3MCgwMCk4MDQ0Ny1YPC9lbGVjdHJvbmljLXJlc291cmNlLW51 bT48L3JlY29yZD48L0NpdGU+PC9FbmROb3RlPn== ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5HaXJhdWRpPC9BdXRob3I+PFllYXI+MTk4MTwvWWVhcj48 UmVjTnVtPjg3PC9SZWNOdW0+PERpc3BsYXlUZXh0PihHaXJhdWRpIGFuZCBHcmlsbG8sIDE5ODEs IFRhbmFrYSBldCBhbC4sIDE5ODgpPC9EaXNwbGF5VGV4dD48cmVjb3JkPjxyZWMtbnVtYmVyPjg3 PC9yZWMtbnVtYmVyPjxmb3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0icGR2NWFhMmFo Mng1dG5lNXplY3Bhd3pnejJ4cHJzend3djJkIiB0aW1lc3RhbXA9IjE1MjUwNzg0NDMiPjg3PC9r ZXk+PC9mb3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3Jl Zi10eXBlPjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5HaXJhdWRpLCBHaWFuZnJhbmNv PC9hdXRob3I+PGF1dGhvcj5HcmlsbG8sIENhdGVyaW5hPC9hdXRob3I+PC9hdXRob3JzPjwvY29u dHJpYnV0b3JzPjx0aXRsZXM+PHRpdGxlPkRpcmVjdCBzcGVjdHJvcGhvdG9tZXRyaWMgZGV0ZXJt aW5hdGlvbiBvZiB0aGlvY3lhbmF0ZSBpbiBzZXJ1bSBhbmQgdXJpbmUgd2l0aCBhIGNvbnRpbnVv dXMtZmxvdyBhbmFseXplcjwvdGl0bGU+PHNlY29uZGFyeS10aXRsZT5BbmFseXRpY2EgQ2hpbWlj YSBBY3RhPC9zZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+ QW5hbHl0aWNhIENoaW1pY2EgQWN0YTwvZnVsbC10aXRsZT48L3BlcmlvZGljYWw+PHBhZ2VzPjE2 OS0xNzU8L3BhZ2VzPjx2b2x1bWU+MTI4PC92b2x1bWU+PGRhdGVzPjx5ZWFyPjE5ODE8L3llYXI+ PHB1Yi1kYXRlcz48ZGF0ZT4xOTgxLzA3LzAxLzwvZGF0ZT48L3B1Yi1kYXRlcz48L2RhdGVzPjxp c2JuPjAwMDMtMjY3MDwvaXNibj48dXJscz48cmVsYXRlZC11cmxzPjx1cmw+aHR0cDovL3d3dy5z Y2llbmNlZGlyZWN0LmNvbS9zY2llbmNlL2FydGljbGUvcGlpL1MwMDAzMjY3MDAxODQwOTY0PC91 cmw+PC9yZWxhdGVkLXVybHM+PC91cmxzPjxlbGVjdHJvbmljLXJlc291cmNlLW51bT5odHRwczov L2RvaS5vcmcvMTAuMTAxNi9TMDAwMy0yNjcwKDAxKTg0MDk2LTQ8L2VsZWN0cm9uaWMtcmVzb3Vy Y2UtbnVtPjwvcmVjb3JkPjwvQ2l0ZT48Q2l0ZT48QXV0aG9yPlRhbmFrYTwvQXV0aG9yPjxZZWFy PjE5ODg8L1llYXI+PFJlY051bT44OTwvUmVjTnVtPjxyZWNvcmQ+PHJlYy1udW1iZXI+ODk8L3Jl Yy1udW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFwcD0iRU4iIGRiLWlkPSJwZHY1YWEyYWgyeDV0 bmU1emVjcGF3emd6MnhwcnN6d3d2MmQiIHRpbWVzdGFtcD0iMTUyNTA5MDk3NSI+ODk8L2tleT48 L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5 cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPlRhbmFrYSwgQWtyYTwvYXV0aG9yPjxh dXRob3I+TWFzaGliYSwga2Vpamk8L2F1dGhvcj48YXV0aG9yPkRlZ3VjaGksIFRvc2hpbzwvYXV0 aG9yPjwvYXV0aG9ycz48L2NvbnRyaWJ1dG9ycz48dGl0bGVzPjx0aXRsZT5TaW11bHRhbmVvdXMg ZGV0ZXJtaW5hdGlvbm9mIGN5YW5pZGUgYW5kIHRoaW9jeWFuYXRlIGJ5IHRoZSBweXJpZGluZS9i YXJiaXR1cmljIGFjaWQgbWV0aG9kIGFmdGVyIGRpZmZ1c2lvbiB0aHJvdWdoIGEgbWljcm9wb3Jv dXMgbWVtYnJhbmU8L3RpdGxlPjxzZWNvbmRhcnktdGl0bGU+QW5hbHl0aWNhIENoaW1pY2EgQWN0 YTwvc2Vjb25kYXJ5LXRpdGxlPjwvdGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPkFuYWx5 dGljYSBDaGltaWNhIEFjdGE8L2Z1bGwtdGl0bGU+PC9wZXJpb2RpY2FsPjxwYWdlcz4yNTktMjY5 PC9wYWdlcz48dm9sdW1lPjIxNDwvdm9sdW1lPjxkYXRlcz48eWVhcj4xOTg4PC95ZWFyPjxwdWIt ZGF0ZXM+PGRhdGU+MTk4OC8wMS8wMS88L2RhdGU+PC9wdWItZGF0ZXM+PC9kYXRlcz48aXNibj4w MDAzLTI2NzA8L2lzYm4+PHVybHM+PHJlbGF0ZWQtdXJscz48dXJsPmh0dHA6Ly93d3cuc2NpZW5j ZWRpcmVjdC5jb20vc2NpZW5jZS9hcnRpY2xlL3BpaS9TMDAwMzI2NzAwMDgwNDQ3WDwvdXJsPjwv cmVsYXRlZC11cmxzPjwvdXJscz48ZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+aHR0cHM6Ly9kb2ku b3JnLzEwLjEwMTYvUzAwMDMtMjY3MCgwMCk4MDQ0Ny1YPC9lbGVjdHJvbmljLXJlc291cmNlLW51 bT48L3JlY29yZD48L0NpdGU+PC9FbmROb3RlPn== ADDIN EN.CITE.DATA (Giraudi and Grillo, 1981, Tanaka et al., 1988). Despite the advantages, many of these methods require sample pretreatment and expensive equipment’s. In addition, some methods need to use toxic reagents in the measuring procedure and interference of some existing conditions may limit the application of some methods. For example, colorimetric method has been utilized for cyanide determination based on K?nig reaction but the drawback of this method is the use of hazardous chemicals such benzidine that is carcinogenic ADDIN EN.CITE <EndNote><Cite><Author>Ghanavati</Author><Year>2014</Year><RecNum>21</RecNum><DisplayText>(Ghanavati et al., 2014)</DisplayText><record><rec-number>21</rec-number><foreign-keys><key app=”EN” db-id=”pdv5aa2ah2x5tne5zecpawzgz2xprszwwv2d” timestamp=”1523434059″>21</key></foreign-keys><ref-type name=”Journal Article”>17</ref-type><contributors><authors><author>Ghanavati, Mahdi</author><author>Azad, Reza Roosta</author><author>Mousavi, Seyyed Abbas</author></authors></contributors><titles><title>Amperometric inhibition biosensor for the determination of cyanide</title><secondary-title>Sensors and Actuators B: Chemical</secondary-title></titles><periodical><full-title>Sensors and Actuators B: Chemical</full-title></periodical><pages>858-864</pages><volume>190</volume><keywords><keyword>Cyanide determination</keyword><keyword>Biosensor</keyword><keyword>Inhibition</keyword><keyword>Enzyme</keyword></keywords><dates><year>2014</year><pub-dates><date>2014/01/01/</date></pub-dates></dates><isbn>0925-4005</isbn><urls><related-urls><url>http://www.sciencedirect.com/science/article/pii/S0925400513010964</url></related-urls></urls><electronic-resource-num>https://doi.org/10.1016/j.snb.2013.09.055</electronic-resource-num></record></Cite></EndNote>(Ghanavati et al., 2014).

5. Related work 5.1. Spectrophotometric method Determination of trace amounts of cyanide and hydrogen cyanide utilizing p-aminoacetanilide in different samples (pesticide, Coke oven effluents, air samples), the method is based on conversion of cyanide to cyanogen chloride by chloramineT and cyanogen chloride produced is coupled with pyridine to form an additional product which subsequently condenses with p-aminoacetanilide to form a coloured product measurable at 485 nm, and the results confirmed by a reported method ADDIN EN.CITE <EndNote><Cite><Author>Verma</Author><Year>1996</Year><RecNum>78</RecNum><DisplayText>(Verma and Gupta, 1996)</DisplayText><record><rec-number>78</rec-number><foreign-keys><key app=”EN” db-id=”pdv5aa2ah2x5tne5zecpawzgz2xprszwwv2d” timestamp=”1524922340″>78</key></foreign-keys><ref-type name=”Journal Article”>17</ref-type><contributors><authors><author>Verma, AK</author><author>Gupta, VK</author></authors></contributors><titles><title>Spectrophotometric Determination of Cyanide and Hydrogen Cyanide Using p-Amino benzoic Acid as a New Reagent and Its Application in Steel Industries</title><secondary-title>Asian Journal of Chemistry</secondary-title></titles><periodical><full-title>Asian Journal of Chemistry</full-title></periodical><pages>613</pages><volume>8</volume><number>4</number><dates><year>1996</year></dates><isbn>0970-7077</isbn><urls></urls></record></Cite></EndNote>(Verma and Gupta, 1996) (Table 1). Although a number of spectrophotometric methods have been reported for the determination of cyanide, the most of them use bromine water which is toxic in nature, few of the reported method use benzidine and other amino like p-phenylenediamine, compounds for coupling which are carcinogenic (Table 2). all these drawbacks are removed by using chloramine-T and p-aminoacetanilide, this work was reported by ADDIN EN.CITE <EndNote><Cite><Author>Parmar</Author><Year>2010</Year><RecNum>76</RecNum><DisplayText>(Parmar et al., 2010)</DisplayText><record><rec-number>76</rec-number><foreign-keys><key app=”EN” db-id=”pdv5aa2ah2x5tne5zecpawzgz2xprszwwv2d” timestamp=”1524918351″>76</key></foreign-keys><ref-type name=”Journal Article”>17</ref-type><contributors><authors><author>Parmar, Prachi</author><author>Pillai, Ajai Kumar</author><author>Gupta, Vinay Kumar</author></authors></contributors><titles><title>Rapid spectrophotometric determination of trace amounts of cyanide and hydrogen cyanide using p-aminoacetanilide in various samples</title><secondary-title>Journal of the Korean Chemical Society</secondary-title></titles><periodical><full-title>Journal of the Korean Chemical Society</full-title></periodical><pages>165-168</pages><volume>54</volume><number>1</number><dates><year>2010</year></dates><isbn>1017-2548</isbn><urls></urls></record></Cite></EndNote>(Parmar et al., 2010).

Table 1: Result analysis of various sample a Mean of three replicate analysis. b Result of analysis of Plant Air. c Results of analysis of pesticide. d Result of analysis of coke oven effluents. Table 2: Comparison with other spectrophotometric method Reagents ?max Range Remark p-aminobenzoic acid 410 0.02 – 0.2 Extractive and less sensitive J- Acid 400 0.02 – 0.2 Less sensitive Sulphanilic acid 460 0.5 – 3 Less sensitive, toxic Br2 water used Anthranilic acid 400 1 – 7 Non-toxic but less sensitive Benzidine520 0.1 – 20 Carcinogenic reagent Ninhydrin590 0.04 – 0.24 Less sensitive Phloroglucinol540 0.4 – 3.4 Less sensitive Aquacyanocobyrinic acid heptamethyl ester 580 0.04 – 1.20 Less sensitive p-phenylene diamine515 0.005 – 100 Carcinogenic reagent p-aminoacetanilide 485 0.016 – 0.2 More sensitive p-aminobenzoic acid (.

ADDIN EN.CITE <EndNote><Cite><Author>Verma</Author><Year>1996</Year><RecNum>78</RecNum><DisplayText>(Verma and Gupta, 1996)</DisplayText><record><rec-number>78</rec-number><foreign-keys><key app=”EN” db-id=”pdv5aa2ah2x5tne5zecpawzgz2xprszwwv2d” timestamp=”1524922340″>78</key></foreign-keys><ref-type name=”Journal Article”>17</ref-type><contributors><authors><author>Verma, AK</author><author>Gupta, VK</author></authors></contributors><titles><title>Spectrophotometric Determination of Cyanide and Hydrogen Cyanide Using p-Amino benzoic Acid as a New Reagent and Its Application in Steel Industries</title><secondary-title>Asian Journal of Chemistry</secondary-title></titles><periodical><full-title>Asian Journal of Chemistry</full-title></periodical><pages>613</pages><volume>8</volume><number>4</number><dates><year>1996</year></dates><isbn>0970-7077</isbn><urls></urls></record></Cite></EndNote>(Verma and Gupta, 1996) anthiranilic acid ADDIN EN.CITE <EndNote><Cite><Author>Upadhyay</Author><Year>1984</Year><RecNum>79</RecNum><DisplayText>(Upadhyay and Gupta, 1984)</DisplayText><record><rec-number>79</rec-number><foreign-keys><key app=”EN” db-id=”pdv5aa2ah2x5tne5zecpawzgz2xprszwwv2d” timestamp=”1524924550″>79</key></foreign-keys><ref-type name=”Journal Article”>17</ref-type><contributors><authors><author>Upadhyay, Sweta</author><author>Gupta, VK</author></authors></contributors><titles><title>Spectrophotometric method for the determination of cyanide and its application to biological fluids</title><secondary-title>Analyst</secondary-title></titles><periodical><full-title>Analyst</full-title></periodical><pages>1619-1620</pages><volume>109</volume><number>12</number><dates><year>1984</year></dates><isbn>1364-5528</isbn><urls></urls></record></Cite></EndNote>(Upadhyay and Gupta, 1984) ninhydrin ADDIN EN.CITE <EndNote><Cite><Author>Nagaraja</Author><Year>2002</Year><RecNum>80</RecNum><DisplayText>(Nagaraja et al., 2002)</DisplayText><record><rec-number>80</rec-number><foreign-keys><key app=”EN” db-id=”pdv5aa2ah2x5tne5zecpawzgz2xprszwwv2d” timestamp=”1524924953″>80</key></foreign-keys><ref-type name=”Journal Article”>17</ref-type><contributors><authors><author>Nagaraja, Padmarajaiah</author><author>KUMAR, Mattighatta S HEMANTHA</author><author>Yathirajan, Hemmige S</author><author>PRAKASH, Jainara S</author></authors></contributors><titles><title>Novel sensitive spectrophotometric method for the trace determination of cyanide in industrial effluent</title><secondary-title>Analytical sciences</secondary-title></titles><periodical><full-title>Analytical sciences</full-title></periodical><pages>1027-1030</pages><volume>18</volume><number>9</number><dates><year>2002</year></dates><isbn>0910-6340</isbn><urls></urls></record></Cite></EndNote>(Nagaraja et al., 2002) p-phenylene diamine ADDIN EN.CITE <EndNote><Cite><Author>Bark</Author><Year>1964</Year><RecNum>81</RecNum><DisplayText>(Bark and Higson, 1964a)</DisplayText><record><rec-number>81</rec-number><foreign-keys><key app=”EN” db-id=”pdv5aa2ah2x5tne5zecpawzgz2xprszwwv2d” timestamp=”1524925456″>81</key></foreign-keys><ref-type name=”Journal Article”>17</ref-type><contributors><authors><author>Bark, L. S.</author><author>Higson, H. G.</author></authors></contributors><titles><title>Investigation of reagents for the colorimetric determination of small amounts of cyanide-II11Part I: see reference 4.: A proposed method for trace cyanide in waters</title><secondary-title>Talanta</secondary-title></titles><periodical><full-title>Talanta</full-title></periodical><pages>621-631</pages><volume>11</volume><number>3</number><dates><year>1964</year><pub-dates><date>1964/03/01/</date></pub-dates></dates><isbn>0039-9140</isbn><urls><related-urls><url>http://www.sciencedirect.com/science/article/pii/0039914064800734</url></related-urls></urls><electronic-resource-num>https://doi.org/10.1016/0039-9140(64)80073-4</electronic-resource-num></record></Cite></EndNote>(Bark and Higson, 1964a) A sensitive reagent system is proposed for the detection of cyanide and hydrogen cyanide in different environmental samples, the method is based on the conversion of cyanide into cyanogen bromide followed by its reaction with pyridine to form glutaconic aldehyde, p-aminoacetophenone is added at last step, then the reaction mixture coupled with formed glutaconicaldehyde and yellow dye (polymethylene dye) showed maximum absorbanceat 445 nm (Figure 3). The method has been successfully applied for the determination of cyanide in industrial effluent, air and biological fluids and it is suitable for industrial hygiene work as well as for the determination of pesticide acrylonitrile, this work reported by ADDIN EN.CITE <EndNote><Cite><Author>Agrawal</Author><Year>2005</Year><RecNum>63</RecNum><DisplayText>(Agrawal et al., 2005)</DisplayText><record><rec-number>63</rec-number><foreign-keys><key app=”EN” db-id=”pdv5aa2ah2x5tne5zecpawzgz2xprszwwv2d” timestamp=”1524901892″>63</key></foreign-keys><ref-type name=”Journal Article”>17</ref-type><contributors><authors><author>Agrawal, Omi</author><author>Sunita, G</author><author>Gupta, VK</author></authors></contributors><titles><title>A sensitive colorimetric reagent for the determination of cyanide and hydrogen cyanide in various environmental samples</title><secondary-title>Journal of the Chinese Chemical Society</secondary-title></titles><periodical><full-title>Journal of the Chinese Chemical Society</full-title></periodical><pages>51-57</pages><volume>52</volume><number>1</number><dates><year>2005</year></dates><isbn>2192-6549</isbn><urls></urls></record></Cite></EndNote>(Agrawal et al., 2005). Figure 3: Colour reaction of cyanide A spectrophotometric method used for the determination of total cyanide in surface waters. Surface waters can be affected by the run-off from road salt which often contains sodium hexacyanoferrate (II) as an anti-caking agent.

The method is based on the decomposition of complexes cyanide to free cyanide by exposure to short wave ultraviolet (UV) light, the sample is then analyzed for free cyanide by a method based on the K?nig reaction, the optimum sample UV irradiation time and the effect of NaCl on the spectrophotometric method were investigated (Table 3). The concentration of NaCl is used it selected to cover the concentrations of NaCl found in waters adjacent to road-salt storage facilities, were the slopes of the linear regression 3.00, 2.94, 2.90 and 2.79 A pg-1 and added NaCl 0, 1, 5 and 10g l-1, respectively, as a result concluded decrease in the slope coefficient with increasing NaCl concentrations this indicates that NaCl interferes with the spectrophotometric procedure, the method was applied to different surface water samples using standard additions to eliminate the interference from high salt concentrations and background sample colour in some surface water samples, this work reported by ADDIN EN.CITE <EndNote><Cite><Author>Ohno</Author><Year>1989</Year><RecNum>45</RecNum><DisplayText>(Ohno, 1989)</DisplayText><record><rec-number>45</rec-number><foreign-keys><key app=”EN” db-id=”pdv5aa2ah2x5tne5zecpawzgz2xprszwwv2d” timestamp=”1523603583″>45</key></foreign-keys><ref-type name=”Journal Article”>17</ref-type><contributors><authors><author>Ohno, Tsutomu</author></authors></contributors><titles><title>Spectrophotometric determination of total cyanide in surface waters following ultraviolet induced photodecomposition</title><secondary-title>Analyst</secondary-title></titles><periodical><full-title>Analyst</full-title></periodical><pages>857-858</pages><volume>114</volume><number>7</number><dates><year>1989</year></dates><urls></urls></record></Cite></EndNote>(Ohno, 1989). 88392035623500Table 3: Effect of NaCI on the linear calibration equations for cyanide,when ( r ) is correlation Hydrogen cyanide is most frequently determined in air by spectrophotometric methods based on K?nig’s reaction, which has a reasonably high sensitivity and reproducibility. Hydrogen cyanide present in air is absorbed in 0.002 M sodium hydroxide solution, which is coupled with bromin to form cyanigen bromide, and the cyanogen bromide so formed reacts with pyridine to form glutaconicaldehyde, the latter readily reacts with anthranilic acid to form a coloured polymethine dye, and shows a maximum absorbance at 400 nm, the result compared (Table 4) with the standard benzidine method given by Alridge ADDIN EN.CITE ;EndNote;;Cite;;Author;Aldridge;/Author;;Year;1944;/Year;;RecNum;55;/RecNum;;DisplayText;(Aldridge, 1944);/DisplayText;;record;;rec-number;55;/rec-number;;foreign-keys;;key app=”EN” db-id=”pdv5aa2ah2x5tne5zecpawzgz2xprszwwv2d” timestamp=”1524374700″;55;/key;;/foreign-keys;;ref-type name=”Journal Article”;17;/ref-type;;contributors;;authors;;author;Aldridge, W_ N;/author;;/authors;;/contributors;;titles;;title;A new method for the estimation of micro quantities of cyanide and thiocyanate;/title;;secondary-title;Analyst;/secondary-title;;/titles;;periodical;;full-title;Analyst;/full-title;;/periodical;;pages;262-265;/pages;;volume;69;/volume;;number;822;/number;;dates;;year;1944;/year;;/dates;;isbn;1364-5528;/isbn;;urls;;/urls;;/record;;/Cite;;/EndNote;(Aldridge, 1944). Also the method has been successfully applied to the determination of cyanide in biological samples such cysteine and whole blood ( Table 5), the results show 100% recovery of hydrogen cyanide from cysteine, which is in agreement with the results of the pyrazolone method ADDIN EN.CITE ;EndNote;;Cite;;Author;Johnson;/Author;;Year;1985;/Year;;RecNum;91;/RecNum;;DisplayText;(Johnson and Williams, 1985);/DisplayText;;record;;rec-number;91;/rec-number;;foreign-keys;;key app=”EN” db-id=”pdv5aa2ah2x5tne5zecpawzgz2xprszwwv2d” timestamp=”1525163347″;91;/key;;/foreign-keys;;ref-type name=”Journal Article”;17;/ref-type;;contributors;;authors;;author;Johnson, Deadre J;/author;;author;Williams, Harold L;/author;;/authors;;/contributors;;titles;;title;A Modified Method for Measuring Cyanide in Biological Specimens;/title;;secondary-title;Analytical Letters;/secondary-title;;/titles;;periodical;;full-title;Analytical letters;/full-title;;/periodical;;pages;855-869;/pages;;volume;18;/volume;;number;7;/number;;dates;;year;1985;/year;;/dates;;isbn;0003-2719;/isbn;;urls;;/urls;;/record;;/Cite;;/EndNote;(Johnson and Williams, 1985).

The sensitivity of the method is better than reported methods, in addition rapid, simple, no made of carcinogenic compounds during uses other advantage of the method ,this work reported by ADDIN EN.CITE ;EndNote;;Cite;;Author;Kaur;/Author;;Year;1987;/Year;;RecNum;24;/RecNum;;DisplayText;(Kaur et al., 1987);/DisplayText;;record;;rec-number;24;/rec-number;;foreign-keys;;key app=”EN” db-id=”pdv5aa2ah2x5tne5zecpawzgz2xprszwwv2d” timestamp=”1523435210″;24;/key;;/foreign-keys;;ref-type name=”Journal Article”;17;/ref-type;;contributors;;authors;;author;Kaur, Preeti;/author;;author;Upadhyay, Sweta;/author;;author;Gupta, VK;/author;;/authors;;/contributors;;titles;;title;Spectrophotometric determination of hydrogen cyanide in air and biological fluids;/title;;secondary-title;Analyst;/secondary-title;;/titles;;periodical;;full-title;Analyst;/full-title;;/periodical;;pages;1681-1683;/pages;;volume;112;/volume;;number;12;/number;;dates;;year;1987;/year;;/dates;;urls;;/urls;;/record;;/Cite;;/EndNote;(Kaur et al., 1987). Table 4: Determination of generated hydrogen cyanide in air Table 5: Recovery of hydrogen cyanide from cysteine and whole blood samples Determination of cyanide in whole blood, erythrocytes, and plasma in which the cyanide stabilized by silver ions is a more sensitive method, first he cyanide transferred from the acidified sample to sodium hydroxide by aeration and then determined calorimetrically by modification K?nig reaction ( Figure 4) with sodium hypochlorite as the chlorinating agent a rapid loss of measurable cyanide found when cyanide was added to plasma in the absence of silver ions was attributed to a reaction with serum albumin. Tthey believed that more sensitive analytical method are require for the use of whole blood cyanide as an indicators of tobacco smokers, this work reported by ADDIN EN.CITE ;EndNote;;Cite;;Author;Lundquist;/Author;;Year;1985;/Year;;RecNum;66;/RecNum;;DisplayText;(Lundquist et al., 1985);/DisplayText;;record;;rec-number;66;/rec-number;;foreign-keys;;key app=”EN” db-id=”pdv5aa2ah2x5tne5zecpawzgz2xprszwwv2d” timestamp=”1524907026″;66;/key;;/foreign-keys;;ref-type name=”Journal Article”;17;/ref-type;;contributors;;authors;;author;Lundquist, P;/author;;author;Rosling, H;/author;;author;Sörbo, B;/author;;/authors;;/contributors;;titles;;title;Determination of cyanide in whole blood, erythrocytes, and plasma;/title;;secondary-title;Clinical chemistry;/secondary-title;;/titles;;periodical;;full-title;Clinical chemistry;/full-title;;/periodical;;pages;591-595;/pages;;volume;31;/volume;;number;4;/number;;dates;;year;1985;/year;;/dates;;isbn;0009-9147;/isbn;;urls;;/urls;;/record;;/Cite;;/EndNote;(Lundquist et al., 1985). M Figure 4: K?nig reaction for determination of cyanide .cyanide first converted to cyanogen chloride by hypochlorite .and cyanogen chloride then reacted with pyridine to produce glutconic aldehyde .which finally coupled with barbituric acid to yield chromogen.

Spectrophotometric based on K?nig reaction for determination of nicotinic acid/ nicotinamide is most popular methods reported in sub-microgram levels during their reaction with cyanogen bromide, the pyridine rings are split by the K?nig reaction and the reaction products coupled with diazotized, p-aminoacctophenonc, p- aminobenzoic acid, sulphanilic acid and H-acid to form coloured azo dyes. The colours formed with nicotinic acid and nicotinamide are of sufficiently different shades to permit use in a rapid visual qualitative test, nicotinic acid/nicotinamide are best differentiated using p-Aminoacetophenone (PAAP) gives a reddish violet colour with nicotinic acid and red colour with nicotinamide which can be easily distinguished and give a deep violet colour if the sample contains a mixture of the two compounds. As a result the p-aminoacetophenonc gives the best for the determination of nicotinic acid/nicotinamide. In addition, the sensitivity of method after this modification is found to be about eight time more than the conventional K?nig reaction, the method was applied to the determination of nicotinic acid/nicotinamide in food, biological and pharmaceutical samples, this work reported by ADDIN EN.CITE ;EndNote;;Cite;;Author;Khan;/Author;;Year;2005;/Year;;RecNum;49;/RecNum;;DisplayText;(Khan et al., 2005);/DisplayText;;record;;rec-number;49;/rec-number;;foreign-keys;;key app=”EN” db-id=”pdv5aa2ah2x5tne5zecpawzgz2xprszwwv2d” timestamp=”1523606844″;49;/key;;/foreign-keys;;ref-type name=”Journal Article”;17;/ref-type;;contributors;;authors;;author;Khan, Seemab;/author;;author;Rai, MK;/author;;author;Gupta, VK;/author;;author;Rai, JK;/author;;/authors;;/contributors;;titles;;title;Determination of small quantities of nicotinic acid in presence of nicotinamide by modified Konig reaction;/title;;/titles;;dates;;year;2005;/year;;/dates;;isbn;0975-0975;/isbn;;urls;;/urls;;/record;;/Cite;;/EndNote;(Khan et al., 2005).

In the presence of surfactants equilibrium, kinetic and spectral properties can be modified some favorable effects are the inhibition of undesirable reactions, such as hydrolysis and photolysis, stabilization of reaction intermediates, cosolubilization of non-polar and polar derivatization reagents and increase in reaction rates such as micellar catalysis ADDIN EN.CITE ;EndNote;;Cite;;Author;Esteve-Romero;/Author;;Year;1995;/Year;;RecNum;90;/RecNum;;DisplayText;(Esteve-Romero et al., 1995b);/DisplayText;;record;;rec-number;90;/rec-number;;foreign-keys;;key app=”EN” db-id=”pdv5aa2ah2x5tne5zecpawzgz2xprszwwv2d” timestamp=”1525103167″;90;/key;;/foreign-keys;;ref-type name=”Journal Article”;17;/ref-type;;contributors;;authors;;author;Esteve-Romero, J. S.;/author;;author;Simó-Alfonso, E. F.;/author;;author;García-Alvarez-Coque, M. C.;/author;;author;Ramis-Ramos, G.;/author;;/authors;;/contributors;;titles;;title;Micellar enhanced spectrophotometric determination of organic species;/title;;secondary-title;TrAC Trends in Analytical Chemistry;/secondary-title;;/titles;;periodical;;full-title;TrAC Trends in Analytical Chemistry;/full-title;;/periodical;;pages;29-37;/pages;;volume;14;/volume;;number;1;/number;;dates;;year;1995;/year;;pub-dates;;date;1995/01/01/;/date;;/pub-dates;;/dates;;isbn;0165-9936;/isbn;;urls;;related-urls;;url;http://www.sciencedirect.com/science/article/pii/016599369591143G;/url;;/related-urls;;/urls;;electronic-resource-num;https://doi.org/10.1016/0165-9936(95)91143-G;/electronic-resource-num;;/record;;/Cite;;/EndNote;(Esteve-Romero et al., 1995b). in this work presence of surfactants affected on the spectrophotometric analytical procedure for the determination of pyridine derivatives by using the K?nig reaction (Figure 5) like in micellar media of sodium dodecylsulphate (SDS), N-cetyipyridinium chloride and Triton X-100 (Table 6), the sensitivity was largely increased in SDS micellar medium without affected attack of the pyridine ring with cyanogen bromide to produce a glutaconic aldehyde, but the yield of the coupling reaction with an arylamine to produce a polymethine dye was largely increased. Aniline is demonstrated to be superior to other coupling reagents when used in sodium dodecyl sulphate (SDS) micellar solutions.

Application was made to the determination of nicotinic acid in pharmaceuticals, this work reported by ADDIN EN.CITE ;EndNote;;Cite;;Author;Esteve-Romero;/Author;;Year;1995;/Year;;RecNum;44;/RecNum;;DisplayText;(Esteve-Romero et al., 1995a);/DisplayText;;record;;rec-number;44;/rec-number;;foreign-keys;;key app=”EN” db-id=”pdv5aa2ah2x5tne5zecpawzgz2xprszwwv2d” timestamp=”1523603462″;44;/key;;/foreign-keys;;ref-type name=”Journal Article”;17;/ref-type;;contributors;;authors;;author;Esteve-Romero, JS;/author;;author;Monferrer-Pons, Ll;/author;;author;Ramis-Ramos, G;/author;;author;Garcia-Alvarez-Coque, MC;/author;;/authors;;/contributors;;titles;;title;Enhanced spectrophotometric determination of nicotinic acid in a sodium dodecyl sulphate micellar medium;/title;;secondary-title;Talanta;/secondary-title;;/titles;;periodical;;full-title;Talanta;/full-title;;/periodical;;pages;737-745;/pages;;volume;42;/volume;;number;5;/number;;dates;;year;1995;/year;;/dates;;isbn;0039-9140;/isbn;;urls;;/urls;;/record;;/Cite;;/EndNote;(Esteve-Romero et al., 1995a). Figure 5: Reaction for the hydrolysis of pyridine derivatives with cyanogen bromide, and coupling with an arylamine. Table 6: Wave lengths of maximum absorption (nm) for the aniline polymethine dyes in the presence of surfactants Compound Non-micellarSodiumdodecyl sulphateN-Cetylpyridinium chloride Triton X-100 Pyridine PyrrolylmethylpyridineNicotinic acid 480 430 485 485 480 465 490 480 470 *wavelengths measured at PH4.5 and for 0.1M surfactant solutions. 5.2. Micellar liquid chromatographic method A selective Micellar liquid chromatographic (MLC) method for the automatic precolumn derivatization for determination of pyridine compounds (nicotinamide and nicotinic acid) based on König reaction in pharmaceuticals, serum and urine. Initially the heterocyclic nitrogen of a pyridine derivative reacts with cyanogen bromide and coupled with an arylamine to give a polymethine dye, then reaction coupled to a chromatograph to determine nicotinic acid and nicotinamide after precolumn derivatization, first checked the micellar chromatography behavior of the polymethines using a C18 column.

The two vitamins have high polarity with an octanol-water partition coefficient (logPow) of ?0.37 and 0.56 for nicotinamide and nicotinic acid, respectively (Table 7), and their quantification is performed free from interferences by measuring the signal at 440 nm. The result in pharmaceuticals the recoveries obtained depend on the composition stated by the manufacturer, and in serum, urine samples the recoveries are also excellent, this work reported by ADDIN EN.CITE ;EndNote;;Cite;;Author;Capella-Peiró;/Author;;Year;2004;/Year;;RecNum;29;/RecNum;;DisplayText;(Capella-Peiró et al., 2004);/DisplayText;;record;;rec-number;29;/rec-number;;foreign-keys;;key app=”EN” db-id=”pdv5aa2ah2x5tne5zecpawzgz2xprszwwv2d” timestamp=”1523437074″;29;/key;;/foreign-keys;;ref-type name=”Journal Article”;17;/ref-type;;contributors;;authors;;author;Capella-Peiró, Maria-Elisa;/author;;author;Carda-Broch, Samuel;/author;;author;Monferrer-Pons, Llorenç;/author;;author;Esteve-Romero, Josep;/author;;/authors;;/contributors;;titles;;title;Micellar liquid chromatographic determination of nicotinic acid and nicotinamide after precolumn König reaction derivatization;/title;;secondary-title;Analytica Chimica Acta;/secondary-title;;/titles;;periodical;;full-title;Analytica Chimica Acta;/full-title;;/periodical;;pages;81-87;/pages;;volume;517;/volume;;number;1;/number;;keywords;;keyword;König reaction;/keyword;;keyword;Precolumn derivatization;/keyword;;keyword;Micellar liquid chromatography;/keyword;;keyword;Nicotinic acid;/keyword;;keyword;Nicotinamide;/keyword;;/keywords;;dates;;year;2004;/year;;pub-dates;;date;2004/07/26/;/date;;/pub-dates;;/dates;;isbn;0003-2670;/isbn;;urls;;related-urls;;url;http://www.sciencedirect.com/science/article/pii/S0003267004005963;/url;;/related-urls;;/urls;;electronic-resource-num;https://doi.org/10.1016/j.aca.2004.05.014;/electronic-resource-num;;/record;;/Cite;;/EndNote;(Capella-Peiró et al., 2004) . Table 7: Structures, acid–base constants and octanol–water partition coefficients (logPow) for the vitamins and wavelengths of maximum absorption (nm) for the polymethines Compound Structure ?maxlogKlogPowNicotinic acid 440 nf4.85 0.56 Nicotinamide 445 0.5 3.35 ?0.37 5.3. High-performance liquid chromatographic method An ion-pair reversed-phase high-performance liquid chromatographic procedure HPLC technique to determine nicotinic acid (NA) and nicotinamide (NAM) in biological materials was developed by applying a post-column derivatization arrangement consisting of two pumps and two knitted tubular reactors, the nicotinic acid and nicotinamide were converted to highly absorbing derivatives by a modified Konig’s reaction (Figure 7). The vitamers were separated within 10 min on an octadecylsilica column applying a linear gradient of tetra-butylammonium phosphate and methanol.

The fast separation and quantitation of nicotinic acid and nicotinamide, in addition highly sensitivs, specific and applicable to biological materials is advantage of these method, this work reported by ADDIN EN.CITE <EndNote><Cite><Author>Stein</Author><Year>1995</Year><RecNum>47</RecNum><DisplayText>(Stein et al., 1995)</DisplayText><record><rec-number>47</rec-number><foreign-keys><key app=”EN” db-id=”pdv5aa2ah2x5tne5zecpawzgz2xprszwwv2d” timestamp=”1523604005″>47</key></foreign-keys><ref-type name=”Journal Article”>17</ref-type><contributors><authors><author>Stein, J</author><author>Hahn, A</author><author>Rehner, G</author></authors></contributors><titles><title>High-performance liquid chromatographic determination of nicotinic acid and nicotinamide in biological samples applying post-column derivatization resulting in bathmochrome absorption shifts</title><secondary-title>Journal of Chromatography B: Biomedical Sciences and Applications</secondary-title></titles><periodical><full-title>Journal of Chromatography B: Biomedical Sciences and Applications</full-title></periodical><pages>71-78</pages><volume>665</volume><number>1</number><dates><year>1995</year></dates><isbn>0378-4347</isbn><urls></urls></record></Cite></EndNote>(Stein et al., 1995). Figure 7: Technical set-up: The first reagent (R, 2% chloramine T) was pumped into the eluent stream leaving the column through a T-junction by a Waters M-6ooo HPLC pump (P,) at flow-rate of 0.5 ml/min. After a reactant zone consisting of a 2-m length of PTPE tube (MS; 0.5 mm I.D.) the second reagent (R, 0.25% potassium cyanide, 25 mM TRIS, 40 mhf HCl ) was delivered at a flow-rate of 0.5 ml/min by a Waters M-6000 HPLC pump P2. Thereafter 8-m length of PTIX tube (MS, 0.5 mm I.D.) was mounted to achieve complete derivatization. Both reaction tubes were coiled three-dimensionally to minimize peak broadening and kept at 60C in a water bath (T); D = detector, I =integrator. 5.4.

Spectrofluorimetric determination method Developed a method based on modified K?nig reaction to quantify both cyanide and thiocyanate determined spectrofluorlmetrically by using the reagents isonicotinic acid and barbituric acid. The technique based on a modified K?nig reaction the reaction involves the formation of cyanogen chloride (CNCl) which is then reacted with pyridine to produce 2-pentenedial derivative this derivative reacts with an aromatic amine to produce aSchiff base that can be detected by a spectrofluorometrically, and the fluorescence properties of the coloured solutions also investigated, the resulting solution excited at 605 nm and the fluorescence was measured at 620 nm , the intermediate was also fluorescent, excitation and emission wavelengths were 527 nm and 556 nm (Figure 8), this work reported by ADDIN EN.CITE <EndNote><Cite><Author>Tanaka</Author><Year>1992</Year><RecNum>17</RecNum><DisplayText>(Tanaka et al., 1992)</DisplayText><record><rec-number>17</rec-number><foreign-keys><key app=”EN” db-id=”pdv5aa2ah2x5tne5zecpawzgz2xprszwwv2d” timestamp=”1523431471″>17</key></foreign-keys><ref-type name=”Journal Article”>17</ref-type><contributors><authors><author>Tanaka, Akira</author><author>Deguchi, Kazuhiro</author><author>Deguchi, Toshio</author></authors></contributors><titles><title>Spectrofluorimetric determination of cyanide and thiocyanate based on a modified König reaction in a flow-injection system</title><secondary-title>Analytica Chimica Acta</secondary-title></titles><periodical><full-title>Analytica Chimica Acta</full-title></periodical><pages>281-286</pages><volume>261</volume><number>1</number><keywords><keyword>Fluorimetry</keyword><keyword>Flow system</keyword><keyword>Cyanide</keyword><keyword>König reaction</keyword><keyword>Thiocyanate</keyword></keywords><dates><year>1992</year><pub-dates><date>1992/05/25/</date></pub-dates></dates><isbn>0003-2670</isbn><urls><related-urls><url>http://www.sciencedirect.com/science/article/pii/000326709280203J</url></related-urls></urls><electronic-resource-num>https://doi.org/10.1016/0003-2670(92)80203-J</electronic-resource-num></record></Cite></EndNote>(Tanaka et al., 1992). 520 560 600 640680 Wavelength / nm Figure 8: Fluorescence spectra Cyanide concentration 0.2 ?M the emission wavelength during measurement of the excitation spectrum was 560 nm and the excitation wavelength for emission measurement was 650nm Slit width 3 nm. 5.5.

Gas chromatography- mass spectrometry (GC-MS) method A method described for simultaneous determination of cyanide CN) and thiocyanate (SCN) in human saliva the samples diluted and the anions separated by an extractive alkylation technique, tetrabutylammonium sulfate was used as phase-transfer catalyst and pentafluorobenzyl bromide as the derivatizing agent and – 2,5dibromotoluene was used as internal standard for quantitation of CN and SCN in saliva and the products analyzed by a gas chromatography-mass spectrometry (GC-MS) with selected ion monitoring method. The method used to examine 10 saliva specimens and the concentration ranged from 4.8 to 29 pmol0.13 -0.75) pg/mL) for CN and 293 to 1029 pmol/L (17-59.7pg/mL) for SCN respectively (Table 8) the SCN results similar to those obtained from a method using oxidation of SCN to CN with colorimetric detection. The procedure may be useful in forensic drug testing when specimen validity testing is required and also in classifying patients as smokers or non-smokers, in addition use in determining some clinical conditions, this work reported by ADDIN EN.CITE <EndNote><Cite><Author>Paul</Author><Year>2006</Year><RecNum>9</RecNum><DisplayText>(Paul and Smith, 2006)</DisplayText><record><rec-number>9</rec-number><foreign-keys><key app=”EN” db-id=”pdv5aa2ah2x5tne5zecpawzgz2xprszwwv2d” timestamp=”1523429342″>9</key></foreign-keys><ref-type name=”Journal Article”>17</ref-type><contributors><authors><author>Paul, Buddha D</author><author>Smith, Michael L</author></authors></contributors><titles><title>Cyanide and thiocyanate in human saliva by gas chromatography-mass spectrometry</title><secondary-title>Journal of analytical toxicology</secondary-title></titles><periodical><full-title>Journal of analytical toxicology</full-title></periodical><pages>511-515</pages><volume>30</volume><number>8</number><dates><year>2006</year></dates><isbn>1945-2403</isbn><urls></urls></record></Cite></EndNote>(Paul and Smith, 2006) Table 8: cyanid and thiocyanate (mmol/L in ten saliva specimen collected from three male (M) and two female (F) nonsmoking subject 6. Conclusion In conclusion, The K?nig reaction forms the basis of many analytical methods including those for the determination of nicotinic acid, thiocyanate and cyanide.

Due to its toxic nature, a method for its determination has been an area of interest for analytical chemists and numerous methods have been developed and each has its own advantages and disadvantages, most among it the colorimetric methods have been many various problems such as the use of hazardous, often carcinogenic compounds, and the instability of the final color formed as well as of the color reagent itself. 7. Reference ADDIN EN.REFLIST AGRAWAL, O., SUNITA, G. & GUPTA, V.

2005. A sensitive colorimetric reagent for the determination of cyanide and hydrogen cyanide in various environmental samples. Journal of the Chinese Chemical Society, 52, 51-57. ALDRIDGE, W. 1945. The estimation of micro quantities of cyanide and thiocyanate.

The Analyst, 70, 474-474. ALDRIDGE, W. N. 1944. A new method for the estimation of micro quantities of cyanide and thiocyanate. Analyst, 69, 262-265.

BAAR, S. 1966. The micro determination of cyanide: Its application to the analysis of whole blood. Analyst, 91, 268-272.

BARK, L. S. & HIGSON, H. G.

1964a. Investigation of reagents for the colorimetric determination of small amounts of cyanide-II11Part I: see reference 4.: A proposed method for trace cyanide in waters. Talanta, 11, 621-631. BARK, L. S.

& HIGSON, H. G. 1964b. Investigation of reagents for the colorimetric determination of small amounts of cyanide—I.

Talanta, 11, 471-479. CAPELLA-PEIRÓ, M.-E., CARDA-BROCH, S., MONFERRER-PONS, L. & ESTEVE-ROMERO, J. 2004.

Micellar liquid chromatographic determination of nicotinic acid and nicotinamide after precolumn König reaction derivatization. Analytica Chimica Acta, 517, 81-87. CASASSAS, E., PEYDRO, M. & PUIGNOU, L.

1989. Kinetic Spectrophotometric Determination of Trace Amounts of Pyridine With 4, 4?-Diaminostilbene-2, 2?-Disulphonic Acid. Analytical letters, 22, 729-740. CHEN, S.-H., YANG, Z.-Y., WU, H.-L., KOU, H.-S. & LIN, S.-J.

1996. Determination of thiocyanate anion by high-performance liquid chromatography with fluorimetric detection. Journal of analytical toxicology, 20, 38-42. CHINAKA, S., TAKAYAMA, N., MICHIGAMI, Y. & UEDA, K. 1998.

Simultaneous determination of cyanide and thiocyanate in blood by ion chromatography with fluorescence and ultraviolet detection. Journal of Chromatography B: Biomedical Sciences and Applications, 713, 353-359. CHO, H.-J., DO, B.-K., SHIM, S.-M., KWON, H., LEE, D.-H., NAH, A.-H., CHOI, Y.-J. & LEE, S.-Y. 2013.

Determination of cyanogenic compounds in edible plants by ion chromatography. Toxicological research, 29, 143. DIRIKOLU, L., HUGHES, C., HARKINS, D., BOYLES, J., BOSKEN, J., LEHNER, F., TROPPMANN, A., MCDOWELL, K., TOBIN, T. & SEBASTIAN, M. M. 2003.

The toxicokinetics of cyanide and mandelonitrile in the horse and their relevance to the mare reproductive loss syndrome. Toxicology mechanisms and methods, 13, 199-211. EGEKEZE, J. O.

& OEHME, F. W. 1980. Cyanides and their toxicity: a literature review. Veterinary Quarterly, 2, 104-114.

ENSAFI, A. A. & TAJEBAKHSH-E-ARDAKANY, J. 1995.

Determination of thiocyanate at the nanogram level by a kinetic method. Analytical letters, 28, 731-747. EPSTEIN, J. 1947. Estimation of microquantities of cyanide. Analytical Chemistry, 19, 272-274.

ESTEVE-ROMERO, J., MONFERRER-PONS, L., RAMIS-RAMOS, G. & GARCIA-ALVAREZ-COQUE, M. 1995a. Enhanced spectrophotometric determination of nicotinic acid in a sodium dodecyl sulphate micellar medium.

Talanta, 42, 737-745. ESTEVE-ROMERO, J. S., SIMÓ-ALFONSO, E. F., GARCÍA-ALVAREZ-COQUE, M. C.

& RAMIS-RAMOS, G. 1995b. Micellar enhanced spectrophotometric determination of organic species. TrAC Trends in Analytical Chemistry, 14, 29-37. GHANAVATI, M., AZAD, R. R.

& MOUSAVI, S. A. 2014. Amperometric inhibition biosensor for the determination of cyanide.

Sensors and Actuators B: Chemical, 190, 858-864. GIRAUDI, G. & GRILLO, C. 1981. Direct spectrophotometric determination of thiocyanate in serum and urine with a continuous-flow analyzer.

Analytica Chimica Acta, 128, 169-175. GLATZ, Z., NOVÁKOVÁ, S. & ŠT?RBOVÁ, H. 2001.

Analysis of thiocyanate in biological fluids by capillary zone electrophoresis. Journal of Chromatography A, 916, 273-277. IMANARI, T., TANABE, S. & TOIDA, T. 1982.

Simultaneous determination of cyanide and thiocyanate by high performance liquid chromatography. Chemical and Pharmaceutical Bulletin, 30, 3800-3802. JACKSON, R. & LOGUE, B.

A. 2017. A review of rapid and field-portable analytical techniques for the diagnosis of cyanide exposure. Analytica Chimica Acta, 960, 18-39.

JAFARI, M. & JAVAHERI, M. 2010. Selective method based on negative electrospray ionization ion mobility spectrometry for direct analysis of salivary thiocyanate. Analytical chemistry, 82, 6721-6725. JOHNSON, D.

J. & WILLIAMS, H. L. 1985. A Modified Method for Measuring Cyanide in Biological Specimens.

Analytical Letters, 18, 855-869. KANG, H.-I. & SHIN, H.-S. 2014. Ultra-sensitive determination of cyanide in surface water by gas chromatography–tandem mass spectrometry after derivatization with 2-(dimethylamino) ethanethiol. Analytica chimica acta, 852, 168-173.

KAUR, P., UPADHYAY, S. & GUPTA, V. 1987. Spectrophotometric determination of hydrogen cyanide in air and biological fluids. Analyst, 112, 1681-1683.

KHAN, S., RAI, M., GUPTA, V. & RAI, J. 2005. Determination of small quantities of nicotinic acid in presence of nicotinamide by modified Konig reaction.

LOGUE, B. A., HINKENS, D. M., BASKIN, S. I. & ROCKWOOD, G.

A. 2010. The analysis of cyanide and its breakdown products in biological samples. Critical Reviews in Analytical Chemistry, 40, 122-147. LOGUE, B.

A., KIRSCHTEN, N. P., PETRIKOVICS, I., MOSER, M. A., ROCKWOOD, G. A.

& BASKIN, S. I. 2005. Determination of the cyanide metabolite 2-aminothiazoline-4-carboxylic acid in urine and plasma by gas chromatography–mass spectrometry.

Journal of Chromatography B, 819, 237-244. LUNDQUIST, P., MÅRTENSSON, J., SÖRBO, B. & OHMAN, S. 1979.

Method for determining thiocyanate in serum and urine. Clinical chemistry, 25, 678-681. LUNDQUIST, P., ROSLING, H. & SÖRBO, B. 1985. Determination of cyanide in whole blood, erythrocytes, and plasma.

Clinical chemistry, 31, 591-595. LUNDQUIST, P., ROSLING, H., SÖRBO, B. & TIBBLING, L. 1987. Cyanide concentrations in blood after cigarette smoking, as determined by a sensitive fluorimetric method.

Clinical chemistry, 33, 1228-1230. LUNDQUIST, P. & SÖRBO, B. 1989.

Rapid determination of toxic cyanide concentrations in blood. Clinical chemistry, 35, 617-619. MAK, K. K.

W., YANASE, H. & RENNEBERG, R. 2005. Cyanide fishing and cyanide detection in coral reef fish using chemical tests and biosensors.

Biosensors and Bioelectronics, 20, 2581-2593. NAGARAJA, P., KUMAR, M. S. H., YATHIRAJAN, H. S. & PRAKASH, J.

S. 2002. Novel sensitive spectrophotometric method for the trace determination of cyanide in industrial effluent. Analytical sciences, 18, 1027-1030. NAGASHIMA, S.

1983. Preparation of pyridine pyrazolone reagent and pyridine-barbituric acid reagent for spectrophotometric determination of cyanide. Water Research, 17, 833-834. NAGASHIMA, S. 1984. Simultaneous reaction rate spectrophotometric determination of cyanide and thiocyanate by use of the pyridine-barbituric acid method.

Analytical Chemistry, 56, 1944-1947. NAGASHIMA, S. & OZAWA, T. 1981. Spectrophotometric determination of cyanide with isonicotinic acid and barbituric acid. International Journal of Environmental Analytical Chemistry, 10, 99-106.

NARKOWICZ, S., POLKOWSKA, ?. & NAMIE?NIK, J. 2013. Determination of formaldehyde and cyanide ion in human nasal discharge by using simple spectrophotometric methods.

Open Chemistry, 11, 16-24. NOROOZIFAR, M., KHORASANI-MOTLAGH, M. & HOSSEINI, S. N. 2005. Flow injection analysis–flame atomic absorption spectrometry system for indirect determination of cyanide using cadmium carbonate as a new solid-phase reactor.

Analytica Chimica Acta, 528, 269-273. OHNO, T. 1989. Spectrophotometric determination of total cyanide in surface waters following ultraviolet induced photodecomposition. Analyst, 114, 857-858. PARMAR, P., PILLAI, A.

K. & GUPTA, V. K. 2010. Rapid spectrophotometric determination of trace amounts of cyanide and hydrogen cyanide using p-aminoacetanilide in various samples.

Journal of the Korean Chemical Society, 54, 165-168. PAUL, B. D. & SMITH, M. L.

2006. Cyanide and thiocyanate in human saliva by gas chromatography-mass spectrometry. Journal of analytical toxicology, 30, 511-515. PETTIGREW, A. & FELL, G. 1972.

Simplified colorimetric determination of thiocyanate in biological fluids, and its application to investigation of the toxic amblyopias. Clinical Chemistry, 18, 996-1000. PICKERT, A., LINGENFELSER, T., PICKERT, C., BIRBAUMER, N., OVERKAMP, D. & EGGSTEIN, M. 1993.

Comparison of a mechanized version of the ‘König’ reaction and a fluorescence polarization immunoassay for the determination of nicotine metabolites in urine. Clinica Chimica Acta, 217, 143-152. PORTER, T. L., VAIL, T. L., EASTMAN, M.

P., STEWART, R., REED, J., VENEDAM, R. & DELINGER, W. 2007. A solid-state sensor platform for the detection of hydrogen cyanide gas. Sensors and Actuators B: Chemical, 123, 313-317.

PRE, J. & VASSY, R. 1991. Urine thiocyanate: creatinine ratio as a reliable indicator of cigarette smoking. Clinica chimica acta, 204, 87-94.

PRITCHARD, J. 2007. Hydrogen cyanide toxicological overview. Health Protection Agency, CHAPD HQ. SHARMA, A. & THIBERT, R.

1985. The effect of barbituric acid concentration in the spectrophotometric determination of cyanide and thiocyanate by the pyridine-barbituric acid method. Microchimica Acta, 85, 357-363. SHIMOKOBE, T., WATANABE, T., TOGAWA, T.

& IMANARI, T. 1988. Determination of thiocyano group in biological materials. Analytical sciences, 4, 97-100. STEIN, J., HAHN, A. & REHNER, G.

1995. High-performance liquid chromatographic determination of nicotinic acid and nicotinamide in biological samples applying post-column derivatization resulting in bathmochrome absorption shifts. Journal of Chromatography B: Biomedical Sciences and Applications, 665, 71-78. SURLEVA, A., GRADINARU, R.

& DROCHIOIU, G. 2012. Cyanide poisoning: from physiology to forensic analytical chemistry. Int.

J. Crim. Invest, 2, 79. SURLEVA, A., ZAHARIA, M., PINTILIE, O., SANDU, I., TUDORACHI, L. & GRADINARU, R. V.

2016. Improved ninhydrin-based reagent for spectrophotometric determination of ppb levels of cyanide. Environmental Forensics, 17, 48-58. TANABE, S., KITAHARA, M., NAWATA, M.

& KAWANABE, K. 1988. Determination of oxidizable inorganic anions by high-performance liquid chromatography with fluorescence detection and application to the determination of salivary nitrite and thiocyanate and serum thiocyanate. Journal of Chromatography B: Biomedical Sciences and Applications, 424, 29-37. TANAKA, A., DEGUCHI, K.

& DEGUCHI, T. 1992. Spectrofluorimetric determination of cyanide and thiocyanate based on a modified König reaction in a flow-injection system. Analytica Chimica Acta, 261, 281-286.

TANAKA, A., MASHIBA, K. & DEGUCHI, T. 1988. Simultaneous determinationof cyanide and thiocyanate by the pyridine/barbituric acid method after diffusion through a microporous membrane. Analytica Chimica Acta, 214, 259-269.

THEMELIS, D. G. & TZANAVARAS, P. D. 2002.

Solvent extraction flow-injection manifold for the simultaneous spectrophotometric determination of free cyanide and thiocyanate ions based upon on-line masking of cyanides by formaldehyde. Analytica Chimica Acta, 452, 295-302. TOIDA, T., TANABE, S. & IMANARI, T.

1981. Fluorometric Determination of Cyanide and Thiocyanate by Konig Reaction. Chemical and Pharmaceutical Bulletin, 29, 3763-3764. TOIDA, T., TOGAWA, T., TANABE, S.

& IMANARI, T. 1984. Determination of cyanide and thiocyanate in blood plasma and red cells by high-performance liquid chromatography with fluorometric detection. Journal of Chromatography B: Biomedical Sciences and Applications, 308, 133-141.

TSUGE, K., KATAOKA, M. & SETO, Y. 2000. Cyanide and thiocyanate levels in blood and saliva of healthy adult volunteers. Journal of Health Science, 46, 343-350.

UPADHYAY, S. & GUPTA, V. 1984. Spectrophotometric method for the determination of cyanide and its application to biological fluids. Analyst, 109, 1619-1620. VERMA, A. & GUPTA, V. 1996. Spectrophotometric Determination of Cyanide and Hydrogen Cyanide Using p-Amino benzoic Acid as a New Reagent and Its Application in Steel Industries. Asian Journal of Chemistry, 8, 613. VESEY, C. J. & KIRK, C. 1985. Two automated methods for measuring plasma thiocyanate compared. Clinical chemistry, 31, 270-274. YANG, M., HE, J., HU, X., YAN, C., CHENG, Z., ZHAO, Y. & ZUO, G. 2011. Copper oxide nanoparticle sensors for hydrogen cyanide detection: Unprecedented selectivity and sensitivity. Sensors and Actuators B: Chemical, 155, 692-698.

4347210-27749500Kurdistan Regional Government-Iraq Ministry of Higher Education and Scientific Research University of Salahaddin College of Science – Department of Chemistry Determination of Cyanide essay

Remember. This is just a sample

You can get your custom paper from our expert writers

Get custom paper

4347210-27749500Kurdistan Regional Government-Iraq Ministry of Higher Education and Scientific Research University of Salahaddin College of Science – Department of Chemistry Determination of Cyanide. (2019, Jun 20). Retrieved from https://sunnypapers.com/4347210-27749500kurdistan-regional-government-iraq-ministry-of-higher-education-and-scientific-research-university-of-salahaddin-college-of-science-department-of-chemistry-determination-of-cyanide/