Get help now

Significant Changes to Existing Networks and Systems

Updated September 23, 2022
dovnload

Download Paper

File format: .pdf, .doc, available for editing

Significant Changes to Existing Networks and Systems essay

Get help to write your own 100% unique essay

Get custom paper

78 writers are online and ready to chat

This essay has been submitted to us by a student. This is not an example of the work written by our writers.

This requires a lot of time and effort which the management is not willing to sacrifice.People are comfortable with what they have and don’t want to change. Although most problems regarding program changing can be solved, the solutions to it will take much longer than expected. Thus, any new program has to be a big improvement over the old one to justify a significant change (although the great improvement usually means that the old program does not work). Another fundamental problem in fiber optic LANs is the change in technology.

The hardware and software to make LAN run efficiently add up to an expensive package. If many terminals in a building must be in constant touch with each other and a variety of other hardware, such as printers and storage devices, LAN will be cost efficient. However, if the real need is to keep the terminals in touch with a mainframe computer, it would be cheaper to run cables between them and the mainframe. If the terminals need to talk to each other, ordinary telephone lines could very well be used as telephone lines are much cheaper than fiber optics. 3) Economic Evaluation The major practical problem with fiber optics is that it usually costs more than ordinary wires. All costs elements involved in economic evaluation can be grouped into two main classes; which are investment costs and operation costs.

The investment costs usually includes expenditures related to acquiring and owning properties and plants, in this case changing wires to fiber optic cables. All investment costs should be considered, such as those incurred for equipment and materials (also including storage and handling costs), engineering costs and miscellaneous costs. Operation costs include the usage of fiber optics and the wear and tear of it. The higher costs of fiber is often not by itself.

Fiber optic cables are much cheaper than coaxial cables. The main difference comes when all the other components of fiber optics add up, such as transmitters, receivers, couplers and connectors. Fiber systems require separate transmitters and receivers because they cannot directly use the electrical output of computer devices; that signal must be converted into optical form and then converted back into electrical form. Fiber optic connectors and couplers are more expensive than any other electrical components. These costs are the ones that add up and form the major disadvantage of fiber optics. Conclusion: Fiber optic transmission has found a vast array of applications in computer systems.

Some design considerations depend largely on the application. For certain terminal to terminal application, crucial factors including maximising transmission speed and distance and minimising fiber and splice loss. By contrast, connector loss becomes important in local area networks that operate within buildings. In other systems, it is important to minimise the cost of cable, with the intention of reducing the cost of terminal equipment. These system considerations make design and construction of practical fiber optic systems a difficult task. Guidelines appropriate for one system is usually not suitable for another system.

There are a number of essential points about fiber optics that have been mentioned throughout this report. As we move towards a more sophisticated and modern future, the uses of fiber optics are going to grow in all computer systems as well as telecommunication networks. Modern information systems handle ever-increasing data loads which strain the data throughput ability of information systems. Designers have made significant progress in increasing processor speeds, however progress in the design of high-speed interconnection networks has lagged so much so that the most significant bottleneck in today’s information systems is the low speed of communications between integrated chips. These low speed communications networks consume increasing amounts of power in an effort to keep up with the faster processors. The slow communications speed is brought on by the small bandwidth available to existing communications networks based on the propagation of electrical signals through metallic lines.

Optical interconnections offer several advantages over metallic interconnections, they include: higher bandwidth; higher interconnection densities; lower crosstalk; crosstalk which is independent of data rate; inherent parallelism; immunity from electromagnetic interference and ground loops; the ability to exploit the third dimension; lower clock and signal skew; and a higher fan-in/fan-out capability. These advantages mean that optical interconnections have the potential to exhibit higher data rate communication, higher densities of interconnections with lower crosstalk, and lower power consumption. The shortest interconnections however, will remain electrical ones, due in part to the inverse relationship between electrical interconnection length and power consumption, and to a length independent minimum latency time inherent to optical interconnections caused by the time delays required for electrical to optical to electrical conversion.

Significant Changes to Existing Networks and Systems essay

Remember. This is just a sample

You can get your custom paper from our expert writers

Get custom paper

Significant Changes to Existing Networks and Systems. (2019, Nov 25). Retrieved from https://sunnypapers.com/fiber-optics/